3,706 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Resource-aware scheduling for 2D/3D multi-/many-core processor-memory systems

    Get PDF
    This dissertation addresses the complexities of 2D/3D multi-/many-core processor-memory systems, focusing on two key areas: enhancing timing predictability in real-time multi-core processors and optimizing performance within thermal constraints. The integration of an increasing number of transistors into compact chip designs, while boosting computational capacity, presents challenges in resource contention and thermal management. The first part of the thesis improves timing predictability. We enhance shared cache interference analysis for set-associative caches, advancing the calculation of Worst-Case Execution Time (WCET). This development enables accurate assessment of cache interference and the effectiveness of partitioned schedulers in real-world scenarios. We introduce TCPS, a novel task and cache-aware partitioned scheduler that optimizes cache partitioning based on task-specific WCET sensitivity, leading to improved schedulability and predictability. Our research explores various cache and scheduling configurations, providing insights into their performance trade-offs. The second part focuses on thermal management in 2D/3D many-core systems. Recognizing the limitations of Dynamic Voltage and Frequency Scaling (DVFS) in S-NUCA many-core processors, we propose synchronous thread migrations as a thermal management strategy. This approach culminates in the HotPotato scheduler, which balances performance and thermal safety. We also introduce 3D-TTP, a transient temperature-aware power budgeting strategy for 3D-stacked systems, reducing the need for Dynamic Thermal Management (DTM) activation. Finally, we present 3QUTM, a novel method for 3D-stacked systems that combines core DVFS and memory bank Low Power Modes with a learning algorithm, optimizing response times within thermal limits. This research contributes significantly to enhancing performance and thermal management in advanced processor-memory systems

    Forest planning utilizing high spatial resolution data

    Get PDF
    This thesis presents planning approaches adapted for high spatial resolution data from remote sensing and evaluate whether such approaches can enhance the provision of ecosystem services from forests. The presented methods are compared with conventional, stand-level methods. The main focus lies on the planning concept of dynamic treatment units (DTU), where treatments in small units for modelling ecosystem processes and forest management are clustered spatiotemporally to form treatment units realistic in practical forestry. The methodological foundation of the thesis is mainly airborne laser scanning data (raster cells 12.5x12.5 m2), different optimization methods and the forest decision support system Heureka. Paper I demonstrates a mixed-integer programming model for DTU planning, and the results highlight the economic advances of clustering harvests. Paper II and III presents an addition to a DTU heuristic from the literature and further evaluates its performance. Results show that direct modelling of fixed costs for harvest operations can improve plans and that DTU planning enhances the economic outcome of forestry. The higher spatial resolution of data in the DTU approach enables the planning model to assign management with higher precision than if stand-based planning is applied. Paper IV evaluates whether this phenomenon is also valid for ecological values. Here, an approach adapted for cell-level data is compared to a schematic approach, dealing with stand-level data, for the purpose of allocating retention patches. The evaluation of economic and ecological values indicate that high spatial resolution data and an adapted planning approach increased the ecological values, while differences in economy were small. In conclusion, the studies in this thesis demonstrate how forest planning can utilize high spatial resolution data from remote sensing, and the results suggest that there is a potential to increase the overall provision of ecosystem services if such methods are applied

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    SmartChoices: Augmenting Software with Learned Implementations

    Full text link
    We are living in a golden age of machine learning. Powerful models are being trained to perform many tasks far better than is possible using traditional software engineering approaches alone. However, developing and deploying those models in existing software systems remains difficult. In this paper we present SmartChoices, a novel approach to incorporating machine learning into mature software stacks easily, safely, and effectively. We explain the overall design philosophy and present case studies using SmartChoices within large scale industrial systems

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Creating shared value:An operations and supply chain management perspective

    Get PDF
    Focusing solely on short-term profits has caused social, environmental, and economic problems. Creating shared value integrates profitability with social and environmental objectives, offering a holistic solution. This dissertation examines two areas where this integration is crucial. The first topic explores servicizing business models for a transition to a more circular economy, emphasizing environmental benefits and firm profitability. Initially, we focus on pricing policies, comparing pricing schemes across consumer segments to identify win-win-win strategies that meet all people, planet, and profit objectives. Our research reveals that pay-per-use schemes outperform pay-per-period schemes for cost-inefficient or small-scale providers. A win-win (profit and planet) strategy can be achieved by offering a pay-per-use policy to high usage-valuation consumers, but a win-win-win strategy is unattainable. We then investigate consumer choices in servicizing models by conducting a conjoint experiment on payment scheme, price, minimum contract duration, and entry label attributes. The payment scheme emerges as the most influential attribute, with purchasing and pay-per-use schemes being popular options. The second topic focuses on drug shortages. Specifically, we examine the impact of tendering on shortages. Our findings demonstrate that tendering reduces prices but increases shortages, particularly at the beginning of contracts. However, shortages are less severe when alternative suppliers are available, and the market is less concentrated. To address this issue, we propose allowing multiple winners, regionalizing tenders, increasing the time between tender and contract initiation, and incorporating a reliability measure as a winning criterion to mitigate shortages
    • …
    corecore