12,799 research outputs found

    The NASA Astrophysics Data System: Architecture

    Full text link
    The powerful discovery capabilities available in the ADS bibliographic services are possible thanks to the design of a flexible search and retrieval system based on a relational database model. Bibliographic records are stored as a corpus of structured documents containing fielded data and metadata, while discipline-specific knowledge is segregated in a set of files independent of the bibliographic data itself. The creation and management of links to both internal and external resources associated with each bibliography in the database is made possible by representing them as a set of document properties and their attributes. To improve global access to the ADS data holdings, a number of mirror sites have been created by cloning the database contents and software on a variety of hardware and software platforms. The procedures used to create and manage the database and its mirrors have been written as a set of scripts that can be run in either an interactive or unsupervised fashion. The ADS can be accessed at http://adswww.harvard.eduComment: 25 pages, 8 figures, 3 table

    Big tranSMART for clinical decision making

    Get PDF
    Molecular profiling data based patient stratification plays a key role in clinical decision making, such as identification of disease subgroups and prediction of treatment responses of individual subjects. Many existing knowledge management systems like tranSMART enable scientists to do such analysis. But in the big data era, molecular profiling data size increases sharply due to new biological techniques, such as next generation sequencing. None of the existing storage systems work well while considering the three ”V” features of big data (Volume, Variety, and Velocity). New Key Value data stores like Apache HBase and Google Bigtable can provide high speed queries by the Key. These databases can be modeled as Distributed Ordered Table (DOT), which horizontally partitions a table into regions and distributes regions to region servers by the Key. However, none of existing data models work well for DOT. A Collaborative Genomic Data Model (CGDM) has been designed to solve all these is- sues. CGDM creates three Collaborative Global Clustering Index Tables to improve the data query velocity. Microarray implementation of CGDM on HBase performed up to 246, 7 and 20 times faster than the relational data model on HBase, MySQL Cluster and MongoDB. Single nucleotide polymorphism implementation of CGDM on HBase outperformed the relational model on HBase and MySQL Cluster by up to 351 and 9 times. Raw sequence implementation of CGDM on HBase gains up to 440-fold and 22-fold speedup, compared to the sequence alignment map format implemented in HBase and a binary alignment map server. The integration into tranSMART shows up to 7-fold speedup in the data export function. In addition, a popular hierarchical clustering algorithm in tranSMART has been used as an application to indicate how CGDM can influence the velocity of the algorithm. The optimized method using CGDM performs more than 7 times faster than the same method using the relational model implemented in MySQL Cluster.Open Acces
    • …
    corecore