2,189 research outputs found

    Modelling commodity value at risk with Psi Sigma neural networks using open–high–low–close data

    Get PDF
    The motivation for this paper is to investigate the use of a promising class of neural network models, Psi Sigma (PSI), when applied to the task of forecasting the one-day ahead value at risk (VaR) of the oil Brent and gold bullion series using open–high–low–close data. In order to benchmark our results, we also consider VaR forecasts from two different neural network designs, the multilayer perceptron and the recurrent neural network, a genetic programming algorithm, an extreme value theory model along with some traditional techniques such as an ARMA-Glosten, Jagannathan, and Runkle (1,1) model and the RiskMetrics volatility. The forecasting performance of all models for computing the VaR of the Brent oil and the gold bullion is examined over the period September 2001–August 2010 using the last year and half of data for out-of-sample testing. The evaluation of our models is done by using a series of backtesting algorithms such as the Christoffersen tests, the violation ratio and our proposed loss function that considers not only the number of violations but also their magnitude. Our results show that the PSI outperforms all other models in forecasting the VaR of gold and oil at both the 5% and 1% confidence levels, providing an accurate number of independent violations with small magnitude

    Data Size Requirement for Forecasting Daily Crude Oil Price with Neural Networks

    Get PDF
    When the literature regarding applications of neural networks is investigated, it appears that a substantial issue is what size the training data should be when modelling a time series through neural networks. The aim of this paper is to determine the size of training data to be used to construct a forecasting model via a multiple-breakpoint test and compare its performance with two general methods, namely, using all available data and using just two years of data. Furthermore, the importance of the selection of the final neural network model is investigated in detail. The results obtained from daily crude oil prices indicate that the data from the last structural change lead to simpler architectures of neural networks and have an advantage in reaching more accurate forecasts in terms of MAE value. In addition, the statistical tests show that there is a statistically significant interaction between data size and stopping rule.JEL Codes - Q47; C45; C5

    Forecasting inflation with thick models and neural networks

    Get PDF
    This paper applies linear and neural network-based “thick” models for forecasting inflation based on Phillips–curve formulations in the USA, Japan and the euro area. Thick models represent “trimmed mean” forecasts from several neural network models. They outperform the best performing linear models for “real-time” and “bootstrap” forecasts for service indices for the euro area, and do well, sometimes better, for the more general consumer and producer price indices across a variety of countries. JEL Classification: C12, E31bootstrap, Neural Networks, Phillips Curves, real-time forecasting, Thick Models

    Industrial Electricity Demand for Turkey: A Structural Time Series Analysis

    Get PDF
    This research investigates the relationship between Turkish industrial electricity consumption, industrial value added and electricity prices in order to forecast future Turkish industrial electricity demand. To achieve this, an industrial electricity demand function for Turkey is estimated by applying the structural time series technique to annual data over the period 1960 to 2008. In addition to identifying the size and significance of the price and industrial value added (output) elasticities, this technique also uncovers the electricity Underlying Energy Demand Trend (UEDT) for the Turkish industrial sector and is, as far as is known, the first attempt to do this. The results suggest that output and real electricity prices and a UEDT all have an important role to play in driving Turkish industrial electricity demand. Consequently, they should all be incorporated when modelling Turkish industrial electricity demand and the estimated UEDT should arguably be considered in future energy policy decisions concerning the Turkish electricity industry. The output and price elasticities are estimated to be 0.15 and -0.16 respectively, with an increasing (but at a decreasing rate) UEDT and based on the estimated equation, and different forecast assumptions, it is predicted that Turkish industrial electricity demand will be somewhere between 97 and 148 TWh by 2020.Turkish Industrial Electricity Demand; Energy Demand Modelling and Forecasting; Structural Time Series Model (STSM); Future Scenarios.

    Forecasting monthly airline passenger numbers with small datasets using feature engineering and a modified principal component analysis

    Get PDF
    In this study, a machine learning approach based on time series models, different feature engineering, feature extraction, and feature derivation is proposed to improve air passenger forecasting. Different types of datasets were created to extract new features from the core data. An experiment was undertaken with artificial neural networks to test the performance of neurons in the hidden layer, to optimise the dimensions of all layers and to obtain an optimal choice of connection weights – thus the nonlinear optimisation problem could be solved directly. A method of tuning deep learning models using H2O (which is a feature-rich, open source machine learning platform known for its R and Spark integration and its ease of use) is also proposed, where the trained network model is built from samples of selected features from the dataset in order to ensure diversity of the samples and to improve training. A successful application of deep learning requires setting numerous parameters in order to achieve greater model accuracy. The number of hidden layers and the number of neurons, are key parameters in each layer of such a network. Hyper-parameter, grid search, and random hyper-parameter approaches aid in setting these important parameters. Moreover, a new ensemble strategy is suggested that shows potential to optimise parameter settings and hence save more computational resources throughout the tuning process of the models. The main objective, besides improving the performance metric, is to obtain a distribution on some hold-out datasets that resemble the original distribution of the training data. Particular attention is focused on creating a modified version of Principal Component Analysis (PCA) using a different correlation matrix – obtained by a different correlation coefficient based on kinetic energy to derive new features. The data were collected from several airline datasets to build a deep prediction model for forecasting airline passenger numbers. Preliminary experiments show that fine-tuning provides an efficient approach for tuning the ultimate number of hidden layers and the number of neurons in each layer when compared with the grid search method. Similarly, the results show that the modified version of PCA is more effective in data dimension reduction, classes reparability, and classification accuracy than using traditional PCA.</div

    Contribution to Financial Modeling and Financial Forecasting

    Get PDF
    This thesis consists of three chapters. Each chapter is independent research that is conducted during my study. This research is concentrated on financial time series modeling and forecasting. On first chapter, the research aims to prove that any abnormal behavior in debt level is a signal of future unexpected return for firms that is listed in indexes in this study, hence it is a signal to buy. In order to prove this theory multiple indexes from around the world were taken into consideration. This behavior is consistent in most of indexes around the word. The second chapter investigate the effect of United State president speech on value of United State Currency in Foreign Exchange Rate market. In this analysis it is shown that during the time the president is delivering a speech there is distinctive changes in USD value and volatility in global markets. This chapter implies that this effect cannot be captured by linear models, and the impact of the presidential speech is short term. Finally, the third chapter which is the major research of this thesis, suggest two new methods that potentially enhance the financial time series forecasting. Firstly, the new ARMA-RNN model is presented. The suggested model is inheriting the process of Autoregressive Moving Average model which is extensively studied, and train a recurrent neural network based on it to benefit from unique ability of ARMA model as well as strength and nonlinearity of artificial neural network. Secondly the research investigates the use of different frequency of data for input layer to predict the same data on output layer. In other words, artificial neural networks are trained on higher frequency data to predict lower frequency. Finally, both stated method is combined to achieve more superior predictive model
    • …
    corecore