2,791 research outputs found

    Deep Multitask Learning for Semantic Dependency Parsing

    Full text link
    We present a deep neural architecture that parses sentences into three semantic dependency graph formalisms. By using efficient, nearly arc-factored inference and a bidirectional-LSTM composed with a multi-layer perceptron, our base system is able to significantly improve the state of the art for semantic dependency parsing, without using hand-engineered features or syntax. We then explore two multitask learning approaches---one that shares parameters across formalisms, and one that uses higher-order structures to predict the graphs jointly. We find that both approaches improve performance across formalisms on average, achieving a new state of the art. Our code is open-source and available at https://github.com/Noahs-ARK/NeurboParser.Comment: Proceedings of ACL 201

    DAG-Based Attack and Defense Modeling: Don't Miss the Forest for the Attack Trees

    Full text link
    This paper presents the current state of the art on attack and defense modeling approaches that are based on directed acyclic graphs (DAGs). DAGs allow for a hierarchical decomposition of complex scenarios into simple, easily understandable and quantifiable actions. Methods based on threat trees and Bayesian networks are two well-known approaches to security modeling. However there exist more than 30 DAG-based methodologies, each having different features and goals. The objective of this survey is to present a complete overview of graphical attack and defense modeling techniques based on DAGs. This consists of summarizing the existing methodologies, comparing their features and proposing a taxonomy of the described formalisms. This article also supports the selection of an adequate modeling technique depending on user requirements

    Methodologies synthesis

    Get PDF
    This deliverable deals with the modelling and analysis of interdependencies between critical infrastructures, focussing attention on two interdependent infrastructures studied in the context of CRUTIAL: the electric power infrastructure and the information infrastructures supporting management, control and maintenance functionality. The main objectives are: 1) investigate the main challenges to be addressed for the analysis and modelling of interdependencies, 2) review the modelling methodologies and tools that can be used to address these challenges and support the evaluation of the impact of interdependencies on the dependability and resilience of the service delivered to the users, and 3) present the preliminary directions investigated so far by the CRUTIAL consortium for describing and modelling interdependencies

    Inducing Probabilistic Grammars by Bayesian Model Merging

    Full text link
    We describe a framework for inducing probabilistic grammars from corpora of positive samples. First, samples are {\em incorporated} by adding ad-hoc rules to a working grammar; subsequently, elements of the model (such as states or nonterminals) are {\em merged} to achieve generalization and a more compact representation. The choice of what to merge and when to stop is governed by the Bayesian posterior probability of the grammar given the data, which formalizes a trade-off between a close fit to the data and a default preference for simpler models (`Occam's Razor'). The general scheme is illustrated using three types of probabilistic grammars: Hidden Markov models, class-based nn-grams, and stochastic context-free grammars.Comment: To appear in Grammatical Inference and Applications, Second International Colloquium on Grammatical Inference; Springer Verlag, 1994. 13 page
    corecore