74,151 research outputs found

    Towards a Unified Approach to Learning and Adaptation

    Get PDF
    The aim of this thesis is to develop a system that enables autonomous and situated agents to learn and adapt to the environment in which they live and operate. In doing so, the system exploits both adaptation through learning and evolution. A unified approach to learning and adaptation, which combines the principles of neural networks, reinforcement learning and evolutionary methods, is used as a basis for the development of the system. In this regard, a novel method, called Evolutionary Acquisition of Neural Topologies (EANT), of evolving the structures and weights of neural networks is developed. The method introduces an efficient and compact genetic encoding of a neural network onto a linear genome that encodes the topology of the neural network implicitly in the ordering of the elements of the linear genome. Moreover, it enables one to evaluate the neural network without decoding it. The presented genetic encoding is complete in that it can represent any type of neural network. In addition to this, it is closed under both structural mutation and a specially designed crossover operator which exploits the fact that structures originating from some initial structure have some common parts. For evolving the structure and weights of neural networks, the method uses a biologically inspired meta-level evolutionary process where new structures are explored at larger timescale and existing structures are exploited at smaller timescale. The evolutionary process starts with networks of minimal structures whose initial complexity is specified by the domain expert. The introduction of neural structures by structural mutation results in a gradual increase in the complexity of the neural networks along the evolution. The evolutionary process stops searching for the solution when a solution with the necessary minimum complexity is found. This enables EANT to find optimal neural structures for solving a given learning task. The efficiency of EANT is tested on couple of learning tasks and its performance is found to be very good in comparison to other systems tested on the same tasks

    Interpretable Structure-Evolving LSTM

    Full text link
    This paper develops a general framework for learning interpretable data representation via Long Short-Term Memory (LSTM) recurrent neural networks over hierarchal graph structures. Instead of learning LSTM models over the pre-fixed structures, we propose to further learn the intermediate interpretable multi-level graph structures in a progressive and stochastic way from data during the LSTM network optimization. We thus call this model the structure-evolving LSTM. In particular, starting with an initial element-level graph representation where each node is a small data element, the structure-evolving LSTM gradually evolves the multi-level graph representations by stochastically merging the graph nodes with high compatibilities along the stacked LSTM layers. In each LSTM layer, we estimate the compatibility of two connected nodes from their corresponding LSTM gate outputs, which is used to generate a merging probability. The candidate graph structures are accordingly generated where the nodes are grouped into cliques with their merging probabilities. We then produce the new graph structure with a Metropolis-Hasting algorithm, which alleviates the risk of getting stuck in local optimums by stochastic sampling with an acceptance probability. Once a graph structure is accepted, a higher-level graph is then constructed by taking the partitioned cliques as its nodes. During the evolving process, representation becomes more abstracted in higher-levels where redundant information is filtered out, allowing more efficient propagation of long-range data dependencies. We evaluate the effectiveness of structure-evolving LSTM in the application of semantic object parsing and demonstrate its advantage over state-of-the-art LSTM models on standard benchmarks.Comment: To appear in CVPR 2017 as a spotlight pape

    Evolution of Neural Networks for Helicopter Control: Why Modularity Matters

    Get PDF
    The problem of the automatic development of controllers for vehicles for which the exact characteristics are not known is considered in the context of miniature helicopter flocking. A methodology is proposed in which neural network based controllers are evolved in a simulation using a dynamic model qualitatively similar to the physical helicopter. Several network architectures and evolutionary sequences are investigated, and two approaches are found that can evolve very competitive controllers. The division of the neural network into modules and of the task into incremental steps seems to be a precondition for success, and we analyse why this might be so

    Evolving stochastic learning algorithm based on Tsallis entropic index

    Get PDF
    In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the nonextensive entropic index q, regulated by a weight decay term. The behavior of the learning algorithm can be made more stochastic or deterministic depending on the trade off between the temperature T and the q values. This is achieved by introducing a formula that defines a time-dependent relationship between these two important learning parameters. Our experimental study verifies that there are indeed improvements in the convergence speed of this new evolving stochastic learning algorithm, which makes learning faster than using the original Hybrid Learning Scheme (HLS). In addition, experiments are conducted to explore the influence of the entropic index q and temperature T on the convergence speed and stability of the proposed method

    Optimization of Evolutionary Neural Networks Using Hybrid Learning Algorithms

    Full text link
    Evolutionary artificial neural networks (EANNs) refer to a special class of artificial neural networks (ANNs) in which evolution is another fundamental form of adaptation in addition to learning. Evolutionary algorithms are used to adapt the connection weights, network architecture and learning algorithms according to the problem environment. Even though evolutionary algorithms are well known as efficient global search algorithms, very often they miss the best local solutions in the complex solution space. In this paper, we propose a hybrid meta-heuristic learning approach combining evolutionary learning and local search methods (using 1st and 2nd order error information) to improve the learning and faster convergence obtained using a direct evolutionary approach. The proposed technique is tested on three different chaotic time series and the test results are compared with some popular neuro-fuzzy systems and a recently developed cutting angle method of global optimization. Empirical results reveal that the proposed technique is efficient in spite of the computational complexity
    • …
    corecore