12,060 research outputs found

    Why and How Your Traceability Should Evolve: Insights from an Automotive Supplier

    Full text link
    Traceability is a key enabler of various activities in automotive software and systems engineering and required by several standards. However, most existing traceability management approaches do not consider that traceability is situated in constantly changing development contexts involving multiple stakeholders. Together with an automotive supplier, we analyzed how technology, business, and organizational factors raise the need for flexible traceability. We present how traceability can be evolved in the development lifecycle, from early elicitation of traceability needs to the implementation of mature traceability strategies. Moreover, we shed light on how traceability can be managed flexibly within an agile team and more formally when crossing team borders and organizational borders. Based on these insights, we present requirements for flexible tool solutions, supporting varying levels of data quality, change propagation, versioning, and organizational traceability.Comment: 9 pages, 3 figures, accepted in IEEE Softwar

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    A model-driven traceability framework for software product lines

    Get PDF
    International audienceSoftware product line (SPL) engineering is a recent approach to software development where a set of software products are derived for a well defined target application domain, from a common set of core assets using analogous means of production (for instance, through Model Driven Engineering). Therefore, such family of products are built from reuse, instead of developed individually from scratch. SPL promise to lower the costs of development, increase the quality of software, give clients more flexibility and reduce time to market. These benefits come with a set of new problems and turn some older problems possibly more complex. One of these problems is traceability management. In the Europe an AMPLE project we are creating a common traceability framework across the various activities of the SPL development. We identified four orthogonal traceability dimensions in SPL development, one of which is an extension of what is often considered as "traceability of variability". This constitutes one of the two contributions of this paper. The second contribution is the specification of a metamodel for a repository of traceability links in the context of SPL and the implementation of a respective traceability framework. This framework enables fundamental traceability management operations, such as trace import and export, modification, query and visualization. The power of our framework is highlighted with an example scenari

    Software Product Line

    Get PDF
    The Software Product Line (SPL) is an emerging methodology for developing software products. Currently, there are two hot issues in the SPL: modelling and the analysis of the SPL. Variability modelling techniques have been developed to assist engineers in dealing with the complications of variability management. The principal goal of modelling variability techniques is to configure a successful software product by managing variability in domain-engineering. In other words, a good method for modelling variability is a prerequisite for a successful SPL. On the other hand, analysis of the SPL aids the extraction of useful information from the SPL and provides a control and planning strategy mechanism for engineers or experts. In addition, the analysis of the SPL provides a clear view for users. Moreover, it ensures the accuracy of the SPL. This book presents new techniques for modelling and new methods for SPL analysis

    Collaborative traceability management: a multiple case study from the perspectives of organization, process, and culture

    Get PDF
    Traceability is crucial for many activities in software and systems engineering including monitoring the development progress, and proving compliance with standards. In practice, the use and maintenance of trace links are challenging as artifacts undergo constant change, and development takes place in distributed scenarios with multiple collaborating stakeholders. Although traceability management in general has been addressed in previous studies, there is a need for empirical insights into the collaborative aspects of traceability management and how it is situated in existing development contexts. The study reported in this paper aims to close this gap by investigating the relation of collaboration and traceability management, based on an understanding of characteristics of the development effort. In our multiple exploratory case study, we conducted semi-structured interviews with 24 individuals from 15 industrial projects. We explored which challenges arise, how traceability management can support collaboration, how collaboration relates to traceability management approaches, and what characteristics of the development effort influence traceability management and collaboration. We found that practitioners struggle with the following challenges: (1) collaboration across team and tool boundaries, (2) conveying the benefits of traceability, and (3) traceability maintenance. If these challenges are addressed, we found that traceability can facilitate communication and knowledge management in distributed contexts. Moreover, there exist multiple approaches to traceability management with diverse collaboration approaches, i.e., requirements-centered, developer-driven, and mixed approaches. While traceability can be leveraged in software development with both agile and plan-driven paradigms, a certain level of rigor is needed to realize its benefits and overcome challenges. To support practitioners, we provide principles of collaborative traceability management. The main contribution of this paper is empirical evidence of how culture, processes, and organization impact traceability management and collaboration, and principles to support practitioners with collaborative traceability management. We show that collaboration and traceability management have the potential to be mutually beneficial—when investing in one, also the other one is positively affected

    An Approach to Evaluate Software Effectiveness

    Get PDF
    The Air Force Operational Test and Evaluation Center (AFOTEC) is tasked with the evaluation of operational effectiveness of new systems for the Air Force. Currently, the software analysis team within AFOTEC has no methodology to directly address the effectiveness of the software portion of these new systems. This research develops a working definition for software effectiveness, then outlines an approach to evaluate software effectiveness-- the Software Effectiveness Traceability Approach (SETA). Effectiveness is defined as the degree to which the software requirements are satisfied and is therefore application-independent. With SETA, requirements satisfaction is measured by the degree of traceability throughout the software development effort. A degree of traceability is determined for specific pairs of software life-cycle phases, such as the traceability from software requirements to high-level design and low-level design to code. The degrees of traceability are combined for an overall software effectiveness value. It is shown that SETA can be implemented in a simplified database, and basic database operations are described to retrieve traceability information and quantify the software\u27s effectiveness. SETA is demonstrated using actual software development data from a small software component of the avionics subsystem of the C-17, the Air Force\u27s newest transport aircraft

    Digging for Quality Management in Production Systems: A Solution Space for Blockchain Collaborations

    Get PDF
    Quality management (QM) and efficient information sharing among value chain partners have been important IS research topics for decades. Today, IS researchers and practitioners hope to overcome various information inefficiencies in complex supply chains using blockchain approaches. Additionally, future traceability regulations increase companies’ interest in innovative blockchain-based enterprise solutions. We identified several factors that could hinder BC adoption, due to a lack of standards. This paper sheds profound light on organizational and technical aspects of blockchain enterprise applications to support future collaboration initiatives. Furthermore, it develops a terminology that researchers and practitioners can reuse. A case study describes several quality-related objects and events that characterize multiple dimensions and traceability types. Based on these findings, we provide a set of design principles to assist future design features. Finally, this paper provides a holistic orientation and implications for researchers and practitioners moving forwards
    corecore