11,189 research outputs found

    Cryptanalysis of SDES via evolutionary computation techniques

    Full text link
    The cryptanalysis of simplified data encryption standard can be formulated as NP-Hard combinatorial problem. The goal of this paper is two fold. First we want to make a study about how evolutionary computation techniques can efficiently solve the NP-Hard combinatorial problem. For achieving this goal we test several evolutionary computation techniques like memetic algorithm, genetic algorithm and simulated annealing for the cryptanalysis of simplified data encryption standard problem (SDES). And second was a comparison between memetic algorithm, genetic algorithm and simulated annealing were made in order to investigate the performance for the cryptanalysis on SDES. The methods were tested and extensive computational results show that memetic algorithm performs better than genetic algorithms and simulated annealing for such type of NP-Hard combinatorial problem. This paper represents our first effort toward efficient memetic algorithm for the cryptanalysis of SDES.Comment: 7 Pages, International Journal of Computer Science and Information Security (IJCSIS

    On the Impact of the Migration Topology on the Island Model

    Full text link
    Parallel Global Optimization Algorithms (PGOA) provide an efficient way of dealing with hard optimization problems. One method of parallelization of GOAs that is frequently applied and commonly found in the contemporary literature is the so-called Island Model (IM). In this paper we analyze the impact of the migration topology on the performance of a PGOA which uses the Island Model. In particular we consider parallel Differential Evolution and Simulated Annealing with Adaptive Neighborhood and draw first conclusions that emerge from the conducted experiments.Comment: Accepted in Parallel Computing

    Evolutionary Synthesis of Fractional Capacitor Using Simulated Annealing Method

    Get PDF
    Synthesis of fractional capacitor using classical analog circuit synthesis method was described in [6]. The work presented in this paper is focused on synthesis of the same problem by means of evolutionary method simulated annealing. Based on given desired characteristic function as input impedance or transfer function, the proposed method is able to synthesize topology and values of the components of the desired analog circuit. Comparison of the results given in [6] and results obtained by the proposed method will be given and discussed

    Tree Search vs Optimization Approaches for Map Generation

    Full text link
    Search-based procedural content generation uses stochastic global optimization algorithms to search for game content. However, standard tree search algorithms can be competitive with evolution on some optimization problems. We investigate the applicability of several tree search methods to level generation and compare them systematically with several optimization algorithms, including evolutionary algorithms. We compare them on three different game level generation problems: Binary, Zelda, and Sokoban. We introduce two new representations that can help tree search algorithms deal with the large branching factor of the generation problem. We find that in general, optimization algorithms clearly outperform tree search algorithms, but given the right problem representation certain tree search algorithms perform similarly to optimization algorithms, and in one particular problem, we see surprisingly strong results from MCTS.Comment: 10 pages, 9 figures, published at AIIDE 202

    Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives

    Full text link
    Particle Swarm Optimization (PSO) is a metaheuristic global optimization paradigm that has gained prominence in the last two decades due to its ease of application in unsupervised, complex multidimensional problems which cannot be solved using traditional deterministic algorithms. The canonical particle swarm optimizer is based on the flocking behavior and social co-operation of birds and fish schools and draws heavily from the evolutionary behavior of these organisms. This paper serves to provide a thorough survey of the PSO algorithm with special emphasis on the development, deployment and improvements of its most basic as well as some of the state-of-the-art implementations. Concepts and directions on choosing the inertia weight, constriction factor, cognition and social weights and perspectives on convergence, parallelization, elitism, niching and discrete optimization as well as neighborhood topologies are outlined. Hybridization attempts with other evolutionary and swarm paradigms in selected applications are covered and an up-to-date review is put forward for the interested reader.Comment: 34 pages, 7 table

    Simulated annealing: in mathematical global optimization computation, hybrid with local or global search, and practical applications in crystallography and molecular modelling

    Full text link
    Simulated annealing (SA) was inspired from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects, both are attributes of the material that depend on its thermodynamic free energy. In this Paper, firstly we will study SA in details on its practical implementation. Then, hybrid pure SA with local (or global) search optimization methods allows us to be able to design several effective and efficient global search optimization methods. In order to keep the original sense of SA, we clarify our understandings of SA in crystallography and molecular modeling field through the studies of prion amyloid fibrils

    Extremal Optimization: an Evolutionary Local-Search Algorithm

    Full text link
    A recently introduced general-purpose heuristic for finding high-quality solutions for many hard optimization problems is reviewed. The method is inspired by recent progress in understanding far-from-equilibrium phenomena in terms of {\em self-organized criticality,} a concept introduced to describe emergent complexity in physical systems. This method, called {\em extremal optimization,} successively replaces the value of extremely undesirable variables in a sub-optimal solution with new, random ones. Large, avalanche-like fluctuations in the cost function self-organize from this dynamics, effectively scaling barriers to explore local optima in distant neighborhoods of the configuration space while eliminating the need to tune parameters. Drawing upon models used to simulate the dynamics of granular media, evolution, or geology, extremal optimization complements approximation methods inspired by equilibrium statistical physics, such as {\em simulated annealing}. It may be but one example of applying new insights into {\em non-equilibrium phenomena} systematically to hard optimization problems. This method is widely applicable and so far has proved competitive with -- and even superior to -- more elaborate general-purpose heuristics on testbeds of constrained optimization problems with up to 10510^5 variables, such as bipartitioning, coloring, and satisfiability. Analysis of a suitable model predicts the only free parameter of the method in accordance with all experimental results.Comment: Latex, 17 pages, to appear in the {\it Proceedings of the 8th INFORMS Computing Society Conference,} (2003

    Review of Metaheuristics and Generalized Evolutionary Walk Algorithm

    Full text link
    Metaheuristic algorithms are often nature-inspired, and they are becoming very powerful in solving global optimization problems. More than a dozen of major metaheuristic algorithms have been developed over the last three decades, and there exist even more variants and hybrid of metaheuristics. This paper intends to provide an overview of nature-inspired metaheuristic algorithms, from a brief history to their applications. We try to analyze the main components of these algorithms and how and why they works. Then, we intend to provide a unified view of metaheuristics by proposing a generalized evolutionary walk algorithm (GEWA). Finally, we discuss some of the important open questions.Comment: 14 page

    A Heuristic for Magic and Antimagic Graph Labellings

    Full text link
    Graph labellings have been a very fruitful area of research in the last four decades. However, despite the staggering number of papers published in the field (over 1000), few general results are available, and most papers deal with particular classes of graphs and methods. Here we approach the problem from the computational viewpoint, and in a quite general way. We present the existence problem of a particular labelling as a combinatorial optimization problem, then we discuss the possible strategies to solve it, and finally we present a heuristic for finding different classes of labellings, like vertex-, edge-, or face-magic, and (a,d)(a, d)-antimagic (v,e,f)(v, e, f)-labellings. The algorithm has been implemented in C++ and MATLAB, and with its aid we have been able to derive new results for some classes of graphs, in particular, vertex-antimagic edge labellings for small graphs of the type P2r×P3sP_2^r \times P_3^s, for which no general construction is known so far

    A Computational Study of Genetic Crossover Operators for Multi-Objective Vehicle Routing Problem with Soft Time Windows

    Full text link
    The article describes an investigation of the effectiveness of genetic algorithms for multi-objective combinatorial optimization (MOCO) by presenting an application for the vehicle routing problem with soft time windows. The work is motivated by the question, if and how the problem structure influences the effectiveness of different configurations of the genetic algorithm. Computational results are presented for different classes of vehicle routing problems, varying in their coverage with time windows, time window size, distribution and number of customers. The results are compared with a simple, but effective local search approach for multi-objective combinatorial optimization problems
    corecore