4,123 research outputs found

    Detection and classification of masses in mammographic images in a multi-kernel approach

    Full text link
    According to the World Health Organization, breast cancer is the main cause of cancer death among adult women in the world. Although breast cancer occurs indiscriminately in countries with several degrees of social and economic development, among developing and underdevelopment countries mortality rates are still high, due to low availability of early detection technologies. From the clinical point of view, mammography is still the most effective diagnostic technology, given the wide diffusion of the use and interpretation of these images. Herein this work we propose a method to detect and classify mammographic lesions using the regions of interest of images. Our proposal consists in decomposing each image using multi-resolution wavelets. Zernike moments are extracted from each wavelet component. Using this approach we can combine both texture and shape features, which can be applied both to the detection and classification of mammary lesions. We used 355 images of fatty breast tissue of IRMA database, with 233 normal instances (no lesion), 72 benign, and 83 malignant cases. Classification was performed by using SVM and ELM networks with modified kernels, in order to optimize accuracy rates, reaching 94.11%. Considering both accuracy rates and training times, we defined the ration between average percentage accuracy and average training time in a reverse order. Our proposal was 50 times higher than the ratio obtained using the best method of the state-of-the-art. As our proposed model can combine high accuracy rate with low learning time, whenever a new data is received, our work will be able to save a lot of time, hours, in learning process in relation to the best method of the state-of-the-art

    Discriminative Pattern Mining for Breast Cancer Histopathology Image Classification via Fully Convolutional Autoencoder

    Full text link
    Accurate diagnosis of breast cancer in histopathology images is challenging due to the heterogeneity of cancer cell growth as well as of a variety of benign breast tissue proliferative lesions. In this paper, we propose a practical and self-interpretable invasive cancer diagnosis solution. With minimum annotation information, the proposed method mines contrast patterns between normal and malignant images in unsupervised manner and generates a probability map of abnormalities to verify its reasoning. Particularly, a fully convolutional autoencoder is used to learn the dominant structural patterns among normal image patches. Patches that do not share the characteristics of this normal population are detected and analyzed by one-class support vector machine and 1-layer neural network. We apply the proposed method to a public breast cancer image set. Our results, in consultation with a senior pathologist, demonstrate that the proposed method outperforms existing methods. The obtained probability map could benefit the pathology practice by providing visualized verification data and potentially leads to a better understanding of data-driven diagnosis solutions

    Deep Learning for identifying radiogenomic associations in breast cancer

    Full text link
    Purpose: To determine whether deep learning models can distinguish between breast cancer molecular subtypes based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Materials and methods: In this institutional review board-approved single-center study, we analyzed DCE-MR images of 270 patients at our institution. Lesions of interest were identified by radiologists. The task was to automatically determine whether the tumor is of the Luminal A subtype or of another subtype based on the MR image patches representing the tumor. Three different deep learning approaches were used to classify the tumor according to their molecular subtypes: learning from scratch where only tumor patches were used for training, transfer learning where networks pre-trained on natural images were fine-tuned using tumor patches, and off-the-shelf deep features where the features extracted by neural networks trained on natural images were used for classification with a support vector machine. Network architectures utilized in our experiments were GoogleNet, VGG, and CIFAR. We used 10-fold crossvalidation method for validation and area under the receiver operating characteristic (AUC) as the measure of performance. Results: The best AUC performance for distinguishing molecular subtypes was 0.65 (95% CI:[0.57,0.71]) and was achieved by the off-the-shelf deep features approach. The highest AUC performance for training from scratch was 0.58 (95% CI:[0.51,0.64]) and the best AUC performance for transfer learning was 0.60 (95% CI:[0.52,0.65]) respectively. For the off-the-shelf approach, the features extracted from the fully connected layer performed the best. Conclusion: Deep learning may play a role in discovering radiogenomic associations in breast cancer

    Deep learning analysis of breast MRIs for prediction of occult invasive disease in ductal carcinoma in situ

    Full text link
    Purpose: To determine whether deep learning-based algorithms applied to breast MR images can aid in the prediction of occult invasive disease following the di- agnosis of ductal carcinoma in situ (DCIS) by core needle biopsy. Material and Methods: In this institutional review board-approved study, we analyzed dynamic contrast-enhanced fat-saturated T1-weighted MRI sequences of 131 patients at our institution with a core needle biopsy-confirmed diagnosis of DCIS. The patients had no preoperative therapy before breast MRI and no prior history of breast cancer. We explored two different deep learning approaches to predict whether there was a hidden (occult) invasive component in the analyzed tumors that was ultimately detected at surgical excision. In the first approach, we adopted the transfer learning strategy, in which a network pre-trained on a large dataset of natural images is fine-tuned with our DCIS images. Specifically, we used the GoogleNet model pre-trained on the ImageNet dataset. In the second approach, we used a pre-trained network to extract deep features, and a support vector machine (SVM) that utilizes these features to predict the upstaging of the DCIS. We used 10-fold cross validation and the area under the ROC curve (AUC) to estimate the performance of the predictive models. Results: The best classification performance was obtained using the deep features approach with GoogleNet model pre-trained on ImageNet as the feature extractor and a polynomial kernel SVM used as the classifier (AUC = 0.70, 95% CI: 0.58- 0.79). For the transfer learning based approach, the highest AUC obtained was 0.53 (95% CI: 0.41-0.62). Conclusion: Convolutional neural networks could potentially be used to identify occult invasive disease in patients diagnosed with DCIS at the initial core needle biopsy

    Multispectral Spatial Characterization: Application to Mitosis Detection in Breast Cancer Histopathology

    Full text link
    Accurate detection of mitosis plays a critical role in breast cancer histopathology. Manual detection and counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. Multispectral imaging is a recent medical imaging technology, proven successful in increasing the segmentation accuracy in other fields. This study aims at improving the accuracy of mitosis detection by developing a specific solution using multispectral and multifocal imaging of breast cancer histopathological data. We propose to enable clinical routine-compliant quality of mitosis discrimination from other objects. The proposed framework includes comprehensive analysis of spectral bands and z-stack focus planes, detection of expected mitotic regions (candidates) in selected focus planes and spectral bands, computation of multispectral spatial features for each candidate, selection of multispectral spatial features and a study of different state-of-the-art classification methods for candidates classification as mitotic or non mitotic figures. This framework has been evaluated on MITOS multispectral medical dataset and achieved 60% detection rate and 57% F-Measure. Our results indicate that multispectral spatial features have more information for mitosis classification in comparison with white spectral band features, being therefore a very promising exploration area to improve the quality of the diagnosis assistance in histopathology

    TV News Commercials Detection using Success based Locally Weighted Kernel Combination

    Full text link
    Commercial detection in news broadcast videos involves judicious selection of meaningful audio-visual feature combinations and efficient classifiers. And, this problem becomes much simpler if these combinations can be learned from the data. To this end, we propose an Multiple Kernel Learning based method for boosting successful kernel functions while ignoring the irrelevant ones. We adopt a intermediate fusion approach where, a SVM is trained with a weighted linear combination of different kernel functions instead of single kernel function. Each kernel function is characterized by a feature set and kernel type. We identify the feature sub-space locations of the prediction success of a particular classifier trained only with particular kernel function. We propose to estimate a weighing function using support vector regression (with RBF kernel) for each kernel function which has high values (near 1.0) where the classifier learned on kernel function succeeded and lower values (nearly 0.0) otherwise. Second contribution of this work is TV News Commercials Dataset of 150 Hours of News videos. Classifier trained with our proposed scheme has outperformed the baseline methods on 6 of 8 benchmark dataset and our own TV commercials dataset

    Receiver Operating Characteristic Curves and Confidence Bands for Support Vector Machines

    Full text link
    Many problems that appear in biomedical decision making, such as diagnosing disease and predicting response to treatment, can be expressed as binary classification problems. The costs of false positives and false negatives vary across application domains and receiver operating characteristic (ROC) curves provide a visual representation of this trade-off. Nonparametric estimators for the ROC curve, such as a weighted support vector machine (SVM), are desirable because they are robust to model misspecification. While weighted SVMs have great potential for estimating ROC curves, their theoretical properties were heretofore underdeveloped. We propose a method for constructing confidence bands for the SVM ROC curve and provide the theoretical justification for the SVM ROC curve by showing that the risk function of the estimated decision rule is uniformly consistent across the weight parameter. We demonstrate the proposed confidence band method and the superior sensitivity and specificity of the weighted SVM compared to commonly used methods in diagnostic medicine using simulation studies. We present two illustrative examples: diagnosis of hepatitis C and a predictive model for treatment response in breast cancer

    On Breast Cancer Detection: An Application of Machine Learning Algorithms on the Wisconsin Diagnostic Dataset

    Full text link
    This paper presents a comparison of six machine learning (ML) algorithms: GRU-SVM (Agarap, 2017), Linear Regression, Multilayer Perceptron (MLP), Nearest Neighbor (NN) search, Softmax Regression, and Support Vector Machine (SVM) on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset (Wolberg, Street, & Mangasarian, 1992) by measuring their classification test accuracy and their sensitivity and specificity values. The said dataset consists of features which were computed from digitized images of FNA tests on a breast mass (Wolberg, Street, & Mangasarian, 1992). For the implementation of the ML algorithms, the dataset was partitioned in the following fashion: 70% for training phase, and 30% for the testing phase. The hyper-parameters used for all the classifiers were manually assigned. Results show that all the presented ML algorithms performed well (all exceeded 90% test accuracy) on the classification task. The MLP algorithm stands out among the implemented algorithms with a test accuracy of ~99.04%.Comment: 5 pages, 5 figures, 2 tables, presented at the International Conference on Machine Learning and Soft Computing (ICMLSC) 2018 in Phu Quoc Island, Viet Na

    Incorporating Privileged Information to Unsupervised Anomaly Detection

    Full text link
    We introduce a new unsupervised anomaly detection ensemble called SPI which can harness privileged information - data available only for training examples but not for (future) test examples. Our ideas build on the Learning Using Privileged Information (LUPI) paradigm pioneered by Vapnik et al. [19,17], which we extend to unsupervised learning and in particular to anomaly detection. SPI (for Spotting anomalies with Privileged Information) constructs a number of frames/fragments of knowledge (i.e., density estimates) in the privileged space and transfers them to the anomaly scoring space through "imitation" functions that use only the partial information available for test examples. Our generalization of the LUPI paradigm to unsupervised anomaly detection shepherds the field in several key directions, including (i) domain knowledge-augmented detection using expert annotations as PI, (ii) fast detection using computationally-demanding data as PI, and (iii) early detection using "historical future" data as PI. Through extensive experiments on simulated and real datasets, we show that augmenting privileged information to anomaly detection significantly improves detection performance. We also demonstrate the promise of SPI under all three settings (i-iii); with PI capturing expert knowledge, computationally expensive features, and future data on three real world detection tasks

    Multi-Kernel LS-SVM Based Bio-Clinical Data Integration: Applications to Ovarian Cancer

    Full text link
    The medical research facilitates to acquire a diverse type of data from the same individual for particular cancer. Recent studies show that utilizing such diverse data results in more accurate predictions. The major challenge faced is how to utilize such diverse data sets in an effective way. In this paper, we introduce a multiple kernel based pipeline for integrative analysis of high-throughput molecular data (somatic mutation, copy number alteration, DNA methylation and mRNA) and clinical data. We apply the pipeline on Ovarian cancer data from TCGA. After multiple kernels have been generated from the weighted sum of individual kernels, it is used to stratify patients and predict clinical outcomes. We examine the survival time, vital status, and neoplasm cancer status of each subtype to verify how well they cluster. We have also examined the power of molecular and clinical data in predicting dichotomized overall survival data and to classify the tumor grade for the cancer samples. It was observed that the integration of various data types yields higher log-rank statistics value. We were also able to predict clinical status with higher accuracy as compared to using individual data types.Comment: 27 pages, 7 figures, extends the work presented in 6th International Conference on Emerging Databases, accepted for publication in the IJDB
    • …
    corecore