234,866 research outputs found

    Preventing Discriminatory Decision-making in Evolving Data Streams

    Full text link
    Bias in machine learning has rightly received significant attention over the last decade. However, most fair machine learning (fair-ML) work to address bias in decision-making systems has focused solely on the offline setting. Despite the wide prevalence of online systems in the real world, work on identifying and correcting bias in the online setting is severely lacking. The unique challenges of the online environment make addressing bias more difficult than in the offline setting. First, Streaming Machine Learning (SML) algorithms must deal with the constantly evolving real-time data stream. Second, they need to adapt to changing data distributions (concept drift) to make accurate predictions on new incoming data. Adding fairness constraints to this already complicated task is not straightforward. In this work, we focus on the challenges of achieving fairness in biased data streams while accounting for the presence of concept drift, accessing one sample at a time. We present Fair Sampling over Stream (FS2FS^2), a novel fair rebalancing approach capable of being integrated with SML classification algorithms. Furthermore, we devise the first unified performance-fairness metric, Fairness Bonded Utility (FBU), to evaluate and compare the trade-off between performance and fairness of different bias mitigation methods efficiently. FBU simplifies the comparison of fairness-performance trade-offs of multiple techniques through one unified and intuitive evaluation, allowing model designers to easily choose a technique. Overall, extensive evaluations show our measures surpass those of other fair online techniques previously reported in the literature

    Can automatic classification help to increase accuracy in data collection?

    Get PDF
    Purpose: The authors aim at testing the performance of a set of machine learning algorithms that could improve the process of data cleaning when building datasets. Design/methodology/approach: The paper is centered on cleaning datasets gathered from publishers and online resources by the use of specific keywords. In this case, we analyzed data from the Web of Science. The accuracy of various forms of automatic classification was tested here in comparison with manual coding in order to determine their usefulness for data collection and cleaning. We assessed the performance of seven supervised classification algorithms (Support Vector Machine (SVM), Scaled Linear Discriminant Analysis, Lasso and elastic-net regularized generalized linear models, Maximum Entropy, Regression Tree, Boosting, and Random Forest) and analyzed two properties: accuracy and recall. We assessed not only each algorithm individually, but also their combinations through a voting scheme. We also tested the performance of these algorithms with different sizes of training data. When assessing the performance of different combinations, we used an indicator of coverage to account for the agreement and disagreement on classification between algorithms. Findings: We found that the performance of the algorithms used vary with the size of the sample for training. However, for the classification exercise in this paper the best performing algorithms were SVM and Boosting. The combination of these two algorithms achieved a high agreement on coverage and was highly accurate. This combination performs well with a small training dataset (10%), which may reduce the manual work needed for classification tasks. Research limitations: The dataset gathered has significantly more records related to the topic of interest compared to unrelated topics. This may affect the performance of some algorithms, especially in their identification of unrelated papers. Practical implications: Although the classification achieved by this means is not completely accurate, the amount of manual coding needed can be greatly reduced by using classification algorithms. This can be of great help when the dataset is big. With the help of accuracy, recall, and coverage measures, it is possible to have an estimation of the error involved in this classification, which could open the possibility of incorporating the use of these algorithms in software specifically designed for data cleaning and classification. Originality/value: We analyzed the performance of seven algorithms and whether combinations of these algorithms improve accuracy in data collection. Use of these algorithms could reduce time needed for manual data cleaning

    Online Optimization Methods for the Quantification Problem

    Full text link
    The estimation of class prevalence, i.e., the fraction of a population that belongs to a certain class, is a very useful tool in data analytics and learning, and finds applications in many domains such as sentiment analysis, epidemiology, etc. For example, in sentiment analysis, the objective is often not to estimate whether a specific text conveys a positive or a negative sentiment, but rather estimate the overall distribution of positive and negative sentiments during an event window. A popular way of performing the above task, often dubbed quantification, is to use supervised learning to train a prevalence estimator from labeled data. Contemporary literature cites several performance measures used to measure the success of such prevalence estimators. In this paper we propose the first online stochastic algorithms for directly optimizing these quantification-specific performance measures. We also provide algorithms that optimize hybrid performance measures that seek to balance quantification and classification performance. Our algorithms present a significant advancement in the theory of multivariate optimization and we show, by a rigorous theoretical analysis, that they exhibit optimal convergence. We also report extensive experiments on benchmark and real data sets which demonstrate that our methods significantly outperform existing optimization techniques used for these performance measures.Comment: 26 pages, 6 figures. A short version of this manuscript will appear in the proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 201

    The Frequent Items Problem in Online Streaming under Various Performance Measures

    Full text link
    In this paper, we strengthen the competitive analysis results obtained for a fundamental online streaming problem, the Frequent Items Problem. Additionally, we contribute with a more detailed analysis of this problem, using alternative performance measures, supplementing the insight gained from competitive analysis. The results also contribute to the general study of performance measures for online algorithms. It has long been known that competitive analysis suffers from drawbacks in certain situations, and many alternative measures have been proposed. However, more systematic comparative studies of performance measures have been initiated recently, and we continue this work, using competitive analysis, relative interval analysis, and relative worst order analysis on the Frequent Items Problem.Comment: IMADA-preprint-c

    Online Bin Covering: Expectations vs. Guarantees

    Full text link
    Bin covering is a dual version of classic bin packing. Thus, the goal is to cover as many bins as possible, where covering a bin means packing items of total size at least one in the bin. For online bin covering, competitive analysis fails to distinguish between most algorithms of interest; all "reasonable" algorithms have a competitive ratio of 1/2. Thus, in order to get a better understanding of the combinatorial difficulties in solving this problem, we turn to other performance measures, namely relative worst order, random order, and max/max analysis, as well as analyzing input with restricted or uniformly distributed item sizes. In this way, our study also supplements the ongoing systematic studies of the relative strengths of various performance measures. Two classic algorithms for online bin packing that have natural dual versions are Harmonic and Next-Fit. Even though the algorithms are quite different in nature, the dual versions are not separated by competitive analysis. We make the case that when guarantees are needed, even under restricted input sequences, dual Harmonic is preferable. In addition, we establish quite robust theoretical results showing that if items come from a uniform distribution or even if just the ordering of items is uniformly random, then dual Next-Fit is the right choice.Comment: IMADA-preprint-c

    Identification of functionally related enzymes by learning-to-rank methods

    Full text link
    Enzyme sequences and structures are routinely used in the biological sciences as queries to search for functionally related enzymes in online databases. To this end, one usually departs from some notion of similarity, comparing two enzymes by looking for correspondences in their sequences, structures or surfaces. For a given query, the search operation results in a ranking of the enzymes in the database, from very similar to dissimilar enzymes, while information about the biological function of annotated database enzymes is ignored. In this work we show that rankings of that kind can be substantially improved by applying kernel-based learning algorithms. This approach enables the detection of statistical dependencies between similarities of the active cleft and the biological function of annotated enzymes. This is in contrast to search-based approaches, which do not take annotated training data into account. Similarity measures based on the active cleft are known to outperform sequence-based or structure-based measures under certain conditions. We consider the Enzyme Commission (EC) classification hierarchy for obtaining annotated enzymes during the training phase. The results of a set of sizeable experiments indicate a consistent and significant improvement for a set of similarity measures that exploit information about small cavities in the surface of enzymes

    A Systematic Comparison of Music Similarity Adaptation Approaches

    Get PDF
    In order to support individual user perspectives and different retrieval tasks, music similarity can no longer be considered as a static element of Music Information Retrieval (MIR) systems. Various approaches have been proposed recently that allow dynamic adaptation of music similarity measures. This paper provides a systematic comparison of algorithms for metric learning and higher-level facet distance weighting on the MagnaTagATune dataset. A crossvalidation variant taking into account clip availability is presented. Applied on user generated similarity data, its effect on adaptation performance is analyzed. Special attention is paid to the amount of training data necessary for making similarity predictions on unknown data, the number of model parameters and the amount of information available about the music itself. 1
    corecore