1,316 research outputs found

    A Convergent Approximation of the Pareto Optimal Set for Finite Horizon Multiobjective Optimal Control Problems (MOC) Using Viability Theory

    Full text link
    The objective of this paper is to provide a convergent numerical approximation of the Pareto optimal set for finite-horizon multiobjective optimal control problems for which the objective space is not necessarily convex. Our approach is based on Viability Theory. We first introduce the set-valued return function V and show that the epigraph of V is equal to the viability kernel of a properly chosen closed set for a properly chosen dynamics. We then introduce an approximate set-valued return function with finite set-values as the solution of a multiobjective dynamic programming equation. The epigraph of this approximate set-valued return function is shown to be equal to the finite discrete viability kernel resulting from the convergent numerical approximation of the viability kernel proposed in [4, 5]. As a result, the epigraph of the approximate set-valued return function converges towards the epigraph of V. The approximate set-valued return function finally provides the proposed numerical approximation of the Pareto optimal set for every initial time and state. Several numerical examples are provided

    An efficient method for multiobjective optimal control and optimal control subject to integral constraints

    Full text link
    We introduce a new and efficient numerical method for multicriterion optimal control and single criterion optimal control under integral constraints. The approach is based on extending the state space to include information on a "budget" remaining to satisfy each constraint; the augmented Hamilton-Jacobi-Bellman PDE is then solved numerically. The efficiency of our approach hinges on the causality in that PDE, i.e., the monotonicity of characteristic curves in one of the newly added dimensions. A semi-Lagrangian "marching" method is used to approximate the discontinuous viscosity solution efficiently. We compare this to a recently introduced "weighted sum" based algorithm for the same problem. We illustrate our method using examples from flight path planning and robotic navigation in the presence of friendly and adversarial observers.Comment: The final version accepted by J. Comp. Math. : 41 pages, 14 figures. Since the previous version: typos fixed, formatting improved, one mistake in bibliography correcte

    Hamilton-Jacobi scaling limits of Pareto peeling in 2D

    Full text link
    Pareto hull peeling is a discrete algorithm, generalizing convex hull peeling, for sorting points in Euclidean space. We prove that Pareto peeling of a random point set in two dimensions has a scaling limit described by a first-order Hamilton-Jacobi equation and give an explicit formula for the limiting Hamiltonian, which is both non-coercive and non-convex. This contrasts with convex peeling, which converges to curvature flow. The proof involves direct geometric manipulations in the same spirit as Calder (2016).Comment: 50 pages, 18 figures; v2 improves exposition and extends main theorem to cover any norm in R^
    • …
    corecore