7,677 research outputs found

    A Generic Approach and Framework for Managing Complex Information

    Get PDF
    Several application domains, such as healthcare, incorporate domain knowledge into their day-to-day activities to standardise and enhance their performance. Such incorporation produces complex information, which contains two main clusters (active and passive) of information that have internal connections between them. The active cluster determines the recommended procedure that should be taken as a reaction to specific situations. The passive cluster determines the information that describes these situations and other descriptive information plus the execution history of the complex information. In the healthcare domain, a medical patient plan is an example for complex information produced during the disease management activity from specific clinical guidelines. This thesis investigates the complex information management at an application domain level in order to support the day-to-day organization activities. In this thesis, a unified generic approach and framework, called SIM (Specification, Instantiation and Maintenance), have been developed for computerising the complex information management. The SIM approach aims at providing a conceptual model for the complex information at different abstraction levels (generic and entity-specific). In the SIM approach, the complex information at the generic level is referred to as a skeletal plan from which several entity-specific plans are generated. The SIM framework provides comprehensive management aspects for managing the complex information. In the SIM framework, the complex information goes through three phases, specifying the skeletal plans, instantiating entity-specific plans, and then maintaining these entity-specific plans during their lifespan. In this thesis, a language, called AIM (Advanced Information Management), has been developed to support the main functionalities of the SIM approach and framework. AIM consists of three components: AIMSL, AIM ESPDoc model, and AIMQL. The AIMSL is the AIM specification component that supports the formalisation process of the complex information at a generic level (skeletal plans). The AIM ESPDoc model is a computer-interpretable model for the entity-specific plan. AIMQL is the AIM query component that provides support for manipulating and querying the complex information, and provides special manipulation operations and query capabilities, such as replay query support. The applicability of the SIM approach and framework is demonstrated through developing a proof-of-concept system, called AIMS, using the available technologies, such as XML and DBMS. The thesis evaluates the the AIMS system using a clinical case study, which has applied to a medical test request application

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    A Symbolic Execution Algorithm for Constraint-Based Testing of Database Programs

    Full text link
    In so-called constraint-based testing, symbolic execution is a common technique used as a part of the process to generate test data for imperative programs. Databases are ubiquitous in software and testing of programs manipulating databases is thus essential to enhance the reliability of software. This work proposes and evaluates experimentally a symbolic ex- ecution algorithm for constraint-based testing of database programs. First, we describe SimpleDB, a formal language which offers a minimal and well-defined syntax and seman- tics, to model common interaction scenarios between pro- grams and databases. Secondly, we detail the proposed al- gorithm for symbolic execution of SimpleDB models. This algorithm considers a SimpleDB program as a sequence of operations over a set of relational variables, modeling both the database tables and the program variables. By inte- grating this relational model of the program with classical static symbolic execution, the algorithm can generate a set of path constraints for any finite path to test in the control- flow graph of the program. Solutions of these constraints are test inputs for the program, including an initial content for the database. When the program is executed with respect to these inputs, it is guaranteed to follow the path with re- spect to which the constraints were generated. Finally, the algorithm is evaluated experimentally using representative SimpleDB models.Comment: 12 pages - preliminary wor

    Proceedings of the 3rd Workshop on Domain-Specific Language Design and Implementation (DSLDI 2015)

    Full text link
    The goal of the DSLDI workshop is to bring together researchers and practitioners interested in sharing ideas on how DSLs should be designed, implemented, supported by tools, and applied in realistic application contexts. We are both interested in discovering how already known domains such as graph processing or machine learning can be best supported by DSLs, but also in exploring new domains that could be targeted by DSLs. More generally, we are interested in building a community that can drive forward the development of modern DSLs. These informal post-proceedings contain the submitted talk abstracts to the 3rd DSLDI workshop (DSLDI'15), and a summary of the panel discussion on Language Composition

    Implementation of Web Query Languages Reconsidered

    Get PDF
    Visions of the next generation Web such as the "Semantic Web" or the "Web 2.0" have triggered the emergence of a multitude of data formats. These formats have different characteristics as far as the shape of data is concerned (for example tree- vs. graph-shaped). They are accompanied by a puzzlingly large number of query languages each limited to one data format. Thus, a key feature of the Web, namely to make it possible to access anything published by anyone, is compromised. This thesis is devoted to versatile query languages capable of accessing data in a variety of Web formats. The issue is addressed from three angles: language design, common, yet uniform semantics, and common, yet uniform evaluation. % Thus it is divided in three parts: First, we consider the query language Xcerpt as an example of the advocated class of versatile Web query languages. Using this concrete exemplar allows us to clarify and discuss the vision of versatility in detail. Second, a number of query languages, XPath, XQuery, SPARQL, and Xcerpt, are translated into a common intermediary language, CIQLog. This language has a purely logical semantics, which makes it easily amenable to optimizations. As a side effect, this provides the, to the best of our knowledge, first logical semantics for XQuery and SPARQL. It is a very useful tool for understanding the commonalities and differences of the considered languages. Third, the intermediate logical language is translated into a query algebra, CIQCAG. The core feature of CIQCAG is that it scales from tree- to graph-shaped data and queries without efficiency losses when tree-data and -queries are considered: it is shown that, in these cases, optimal complexities are achieved. CIQCAG is also shown to evaluate each of the aforementioned query languages with a complexity at least as good as the best known evaluation methods so far. For example, navigational XPath is evaluated with space complexity O(q d) and time complexity O(q n) where q is the query size, n the data size, and d the depth of the (tree-shaped) data. CIQCAG is further shown to provide linear time and space evaluation of tree-shaped queries for a larger class of graph-shaped data than any method previously proposed. This larger class of graph-shaped data, called continuous-image graphs, short CIGs, is introduced for the first time in this thesis. A (directed) graph is a CIG if its nodes can be totally ordered in such a manner that, for this order, the children of any node form a continuous interval. CIQCAG achieves these properties by employing a novel data structure, called sequence map, that allows an efficient evaluation of tree-shaped queries, or of tree-shaped cores of graph-shaped queries on any graph-shaped data. While being ideally suited to trees and CIGs, the data structure gracefully degrades to unrestricted graphs. It yields a remarkably efficient evaluation on graph-shaped data that only a few edges prevent from being trees or CIGs
    corecore