885 research outputs found

    Heart rate variability and target organ damage in hypertensive patients

    Get PDF
    Background: We evaluated the association between linear standard Heart Rate Variability (HRV) measures and vascular, renal and cardiac target organ damage (TOD). Methods: A retrospective analysis was performed including 200 patients registered in the Regione Campania network (aged 62.4 ± 12, male 64%). HRV analysis was performed by 24-h holter ECG. Renal damage was assessed by estimated glomerular filtration rate (eGFR), vascular damage by carotid intima-media thickness (IMT), and cardiac damage by left ventricular mass index. Results: Significantly lower values of the ratio of low to high frequency power (LF/HF) were found in the patients with moderate or severe eGFR (p-value < 0.001). Similarly, depressed values of indexes of the overall autonomic modulation on heart were found in patients with plaque compared to those with a normal IMT (p-value <0.05). These associations remained significant after adjustment for other factors known to contribute to the development of target organ damage, such as age. Moreover, depressed LF/HF was found also in patients with left ventricular hypertrophy but this association was not significant after adjustment for other factors. Conclusions: Depressed HRV appeared to be associated with vascular and renal TOD, suggesting the involvement of autonomic imbalance in the TOD. However, as the mechanisms by which abnormal autonomic balance may lead to TOD, and, particularly, to renal organ damage are not clearly known, further prospective studies with longitudinal design are needed to determine the association between HRV and the development of TOD

    Nonlinear heart rate variability features for real-life stress detection. Case study : students under stress due to university examination

    Get PDF
    Background: This study investigates the variations of Heart Rate Variability (HRV) due to a real-life stressor and proposes a classifier based on nonlinear features of HRV for automatic stress detection. Methods: 42 students volunteered to participate to the study about HRV and stress. For each student, two recordings were performed: one during an on-going university examination, assumed as a real-life stressor, and one after holidays. Nonlinear analysis of HRV was performed by using Poincaré Plot, Approximate Entropy, Correlation dimension, Detrended Fluctuation Analysis, Recurrence Plot. For statistical comparison, we adopted the Wilcoxon Signed Rank test and for development of a classifier we adopted the Linear Discriminant Analysis (LDA). Results: Almost all HRV features measuring heart rate complexity were significantly decreased in the stress session. LDA generated a simple classifier based on the two Poincaré Plot parameters and Approximate Entropy, which enables stress detection with a total classification accuracy, a sensitivity and a specificity rate of 90%, 86%, and 95% respectively. Conclusions: The results of the current study suggest that nonlinear HRV analysis using short term ECG recording could be effective in automatically detecting real-life stress condition, such as a university examination

    The Electrocardiogram – Waves and Intervals

    Get PDF

    Cardiac Autonomic Neuropathy in Diabetes: A Predictor of Cardiometabolic Events

    Get PDF
    Autonomic nervous system (ANS) imbalance manifesting as cardiac autonomic neuropathy in the diabetic population is an important predictor of cardiovascular events. Symptoms and signs of ANS dysfunction, such as resting heart rate elevations, diminished blood pressure responses to standing, and altered time and frequency domain measures of heart rate variability in response to deep breathing, standing, and the Valsalva maneuver, should be elicited from all patients with diabetes and prediabetes. With the recognition of the presence of ANS imbalance or for its prevention, a rigorous regime should be implemented with lifestyle modification, physical activity, and cautious use of medications that lower blood glucose. Rather than intensifying diabetes control, a regimen tailored to the individual risk of autonomic imbalance should be implemented. New agents that may improve autonomic function, such as SGLT2 inhibitors, should be considered and the use of incretins monitored. One of the central mechanisms of dysfunction is disturbance of the hypothalamic cardiac clock, a consequence of dopamine deficiency that leads to sympathetic dominance, insulin resistance, and features of the metabolic syndrome. An improvement in ANS balance may be critical to reducing cardiovascular events, cardiac failure, and early mortality in the diabetic population

    Design, Evaluation, and Application of Heart Rate Variability Analysis Software (HRVAS)

    Get PDF
    The analysis of heart rate variability (HRV) has become an increasingly popular and important tool for studying many disease pathologies in the past twenty years. HRV analyses are methods used to non-invasively quantify variability within heart rate. Purposes of this study were to design, evaluate, and apply an easy to use and open-source HRV analysis software package (HRVAS). HRVAS implements four major categories of HRV techniques: statistical and time-domain analysis, frequency-domain analysis, nonlinear analysis, and time-frequency analysis. Software evaluations were accomplished by performing HRV analysis on simulated and public congestive heart failure (CHF) data. Application of HRVAS included studying the effects of hyperaldosteronism on HRV in rats. Simulation and CHF results demonstrated that HRVAS was a dependable HRV analysis tool. Results from the rat hyperaldosteronism model showed that 5 of 26 HRV measures were statistically significant (p\u3c0.05). HRVAS provides a useful tool for HRV analysis to researchers

    Heart rate differences between symptomatic and asymptomatic Brugada syndrome patients at night

    Get PDF
    Peer ReviewedPostprint (author's final draft

    Review and classification of variability analysis techniques with clinical applications

    Get PDF
    Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis
    corecore