12,830 research outputs found

    A comparison of new generic camera calibration with the standard parametric approach

    Get PDF
    This paper deals with a recently proposed nonparametric approach to camera calibration, which is applicable to any type of sensor design. Currently, no relative quantitative performance data is available for this method. This paper addresses this issue, by providing a comprehensive evaluation with respect to the standard planar calibration technique in the literature. Experiments are conducted on simulated and real data, with the firm conclusion that the generic calibration method has the capability to outperform the standard parametric approach for imaging systems with significant distortion. The results provide important practical information for the vision community at large

    Efficient generic calibration method for general cameras with single centre of projection

    Get PDF
    Generic camera calibration is a non-parametric calibration technique that is applicable to any type of vision sensor. However, the standard generic calibration method was developed with the goal of generality and it is therefore sub-optimal for the common case of cameras with a single centre of projection (e.g. pinhole, fisheye, hyperboloidal catadioptric). This paper proposes novel improvements to the standard generic calibration method for central cameras that reduce its complexity, and improve its accuracy and robustness. Improvements are achieved by taking advantage of the geometric constraints resulting from a single centre of projection. Input data for the algorithm is acquired using active grids, the performance of which is characterised. A new linear estimation stage to the generic algorithm is proposed incorporating classical pinhole calibration techniques, and it is shown to be significantly more accurate than the linear estimation stage of the standard method. A linear method for pose estimation is also proposed and evaluated against the existing polynomial method. Distortion correction and motion reconstruction experiments are conducted with real data for a hyperboloidal catadioptric sensor for both the standard and proposed methods. Results show the accuracy and robustness of the proposed method to be superior to those of the standard method

    Towards dynamic camera calibration for constrained flexible mirror imaging

    Get PDF
    Flexible mirror imaging systems consisting of a perspective camera viewing a scene reflected in a flexible mirror can provide direct control over image field-of-view and resolution. However, calibration of such systems is difficult due to the vast range of possible mirror shapes and the flexible nature of the system. This paper proposes the fundamentals of a dynamic calibration approach for flexible mirror imaging systems by examining the constrained case of single dimensional flexing. The calibration process consists of an initial primary calibration stage followed by in-service dynamic calibration. Dynamic calibration uses a linear approximation to initialise a non-linear minimisation step, the result of which is the estimate of the mirror surface shape. The method is easier to implement than existing calibration methods for flexible mirror imagers, requiring only two images of a calibration grid for each dynamic calibration update. Experimental results with both simulated and real data are presented that demonstrate the capabilities of the proposed approach

    HeadOn: Real-time Reenactment of Human Portrait Videos

    Get PDF
    We propose HeadOn, the first real-time source-to-target reenactment approach for complete human portrait videos that enables transfer of torso and head motion, face expression, and eye gaze. Given a short RGB-D video of the target actor, we automatically construct a personalized geometry proxy that embeds a parametric head, eye, and kinematic torso model. A novel real-time reenactment algorithm employs this proxy to photo-realistically map the captured motion from the source actor to the target actor. On top of the coarse geometric proxy, we propose a video-based rendering technique that composites the modified target portrait video via view- and pose-dependent texturing, and creates photo-realistic imagery of the target actor under novel torso and head poses, facial expressions, and gaze directions. To this end, we propose a robust tracking of the face and torso of the source actor. We extensively evaluate our approach and show significant improvements in enabling much greater flexibility in creating realistic reenacted output videos.Comment: Video: https://www.youtube.com/watch?v=7Dg49wv2c_g Presented at Siggraph'1

    Robust Intrinsic and Extrinsic Calibration of RGB-D Cameras

    Get PDF
    Color-depth cameras (RGB-D cameras) have become the primary sensors in most robotics systems, from service robotics to industrial robotics applications. Typical consumer-grade RGB-D cameras are provided with a coarse intrinsic and extrinsic calibration that generally does not meet the accuracy requirements needed by many robotics applications (e.g., highly accurate 3D environment reconstruction and mapping, high precision object recognition and localization, ...). In this paper, we propose a human-friendly, reliable and accurate calibration framework that enables to easily estimate both the intrinsic and extrinsic parameters of a general color-depth sensor couple. Our approach is based on a novel two components error model. This model unifies the error sources of RGB-D pairs based on different technologies, such as structured-light 3D cameras and time-of-flight cameras. Our method provides some important advantages compared to other state-of-the-art systems: it is general (i.e., well suited for different types of sensors), based on an easy and stable calibration protocol, provides a greater calibration accuracy, and has been implemented within the ROS robotics framework. We report detailed experimental validations and performance comparisons to support our statements

    Calibration of non-conventional imaging systems

    Get PDF

    Autocalibration with the Minimum Number of Cameras with Known Pixel Shape

    Get PDF
    In 3D reconstruction, the recovery of the calibration parameters of the cameras is paramount since it provides metric information about the observed scene, e.g., measures of angles and ratios of distances. Autocalibration enables the estimation of the camera parameters without using a calibration device, but by enforcing simple constraints on the camera parameters. In the absence of information about the internal camera parameters such as the focal length and the principal point, the knowledge of the camera pixel shape is usually the only available constraint. Given a projective reconstruction of a rigid scene, we address the problem of the autocalibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. We propose an algorithm that only requires 5 cameras (the theoretical minimum), thus halving the number of cameras required by previous algorithms based on the same constraint. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient way. This parameterization is then used to solve autocalibration from five or more cameras, reducing the three-dimensional search space to a two-dimensional one. We provide experiments with real images showing the good performance of the technique.Comment: 19 pages, 14 figures, 7 tables, J. Math. Imaging Vi

    Why Having 10,000 Parameters in Your Camera Model is Better Than Twelve

    Full text link
    Camera calibration is an essential first step in setting up 3D Computer Vision systems. Commonly used parametric camera models are limited to a few degrees of freedom and thus often do not optimally fit to complex real lens distortion. In contrast, generic camera models allow for very accurate calibration due to their flexibility. Despite this, they have seen little use in practice. In this paper, we argue that this should change. We propose a calibration pipeline for generic models that is fully automated, easy to use, and can act as a drop-in replacement for parametric calibration, with a focus on accuracy. We compare our results to parametric calibrations. Considering stereo depth estimation and camera pose estimation as examples, we show that the calibration error acts as a bias on the results. We thus argue that in contrast to current common practice, generic models should be preferred over parametric ones whenever possible. To facilitate this, we released our calibration pipeline at https://github.com/puzzlepaint/camera_calibration, making both easy-to-use and accurate camera calibration available to everyone.Comment: 15 pages, 12 figures, accepted to CVPR 2020 as an ora

    Trifocal Relative Pose from Lines at Points and its Efficient Solution

    Full text link
    We present a new minimal problem for relative pose estimation mixing point features with lines incident at points observed in three views and its efficient homotopy continuation solver. We demonstrate the generality of the approach by analyzing and solving an additional problem with mixed point and line correspondences in three views. The minimal problems include correspondences of (i) three points and one line and (ii) three points and two lines through two of the points which is reported and analyzed here for the first time. These are difficult to solve, as they have 216 and - as shown here - 312 solutions, but cover important practical situations when line and point features appear together, e.g., in urban scenes or when observing curves. We demonstrate that even such difficult problems can be solved robustly using a suitable homotopy continuation technique and we provide an implementation optimized for minimal problems that can be integrated into engineering applications. Our simulated and real experiments demonstrate our solvers in the camera geometry computation task in structure from motion. We show that new solvers allow for reconstructing challenging scenes where the standard two-view initialization of structure from motion fails.Comment: This material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 while most authors were in residence at Brown University's Institute for Computational and Experimental Research in Mathematics -- ICERM, in Providence, R

    Self-Calibration of Cameras with Euclidean Image Plane in Case of Two Views and Known Relative Rotation Angle

    Full text link
    The internal calibration of a pinhole camera is given by five parameters that are combined into an upper-triangular 3×33\times 3 calibration matrix. If the skew parameter is zero and the aspect ratio is equal to one, then the camera is said to have Euclidean image plane. In this paper, we propose a non-iterative self-calibration algorithm for a camera with Euclidean image plane in case the remaining three internal parameters --- the focal length and the principal point coordinates --- are fixed but unknown. The algorithm requires a set of N7N \geq 7 point correspondences in two views and also the measured relative rotation angle between the views. We show that the problem generically has six solutions (including complex ones). The algorithm has been implemented and tested both on synthetic data and on publicly available real dataset. The experiments demonstrate that the method is correct, numerically stable and robust.Comment: 13 pages, 7 eps-figure
    corecore