14,255 research outputs found

    A review of associative classification mining

    Get PDF
    Associative classification mining is a promising approach in data mining that utilizes the association rule discovery techniques to construct classification systems, also known as associative classifiers. In the last few years, a number of associative classification algorithms have been proposed, i.e. CPAR, CMAR, MCAR, MMAC and others. These algorithms employ several different rule discovery, rule ranking, rule pruning, rule prediction and rule evaluation methods. This paper focuses on surveying and comparing the state-of-the-art associative classification techniques with regards to the above criteria. Finally, future directions in associative classification, such as incremental learning and mining low-quality data sets, are also highlighted in this paper

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    Classification of Heart Disease using Artificial Neural Network and Feature Subset Selection

    Get PDF
    Now a day2019;s artificial neural network (ANN) has been widely used as a tool for solving many decision modeling problems. A multilayer perception is a feed forward ANN model that is used extensively for the solution of a no. of different problems. An ANN is the simulation of the human brain. It is a supervised learning technique used for non linear classification Coronary heart disease is major epidemic in India and Andhra Pradesh is in risk of Coronary Heart Disease. Clinical diagnosis is done mostly by doctor2019;s expertise and patients were asked to take no. of diagnosis tests. But all the tests will not contribute towards effective diagnosis of disease. Feature subset selection is a preprocessing step used to reduce dimensionality, remove irrelevant data. In this paper we introduce a classification approach which uses ANN and feature subset selection for the classification of heart disease. PCA is used for preprocessing and to reduce no. Of attributes which indirectly reduces the no. of diagnosis tests which are needed to be taken by a patient. We applied our approach on Andhra Pradesh heart disease data base. Our experimental results show that accuracy improved over traditional classification techniques. This system is feasible and faster and more accurate for diagnosis of heart disease

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Classification Using Association Rules

    Get PDF
    This research investigates the use of an unsupervised learning technique, association rules, to make class predictions. The use of association rules to make class predictions is a growing area of focus within data mining research. The research to date has focused predominately on balanced datasets or synthetized imbalanced datasets. There have been concerns raised that the algorithms using association rules to make classifications do not perform well on imbalanced datasets. This research comprehensively evaluates the accuracy of a number of association rule classifiers in predicting home loan sales in an Irish retail banking context. The experiments designed test three associative classifier algorithms CBA, CMAR and SPARCCC against two benchmark algorithms conditional inference trees and random forests on a naturally imbalanced dataset. The experiments implemented and evaluated show that the benchmark tree based algorithms conditional inference trees and random forests outperform the associative classifier models across a range of balanced accuracy measures. This research contributes to the growing body of research in extending association rules to make class prediction

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page
    corecore