406 research outputs found

    Byzantine state machine replication for the masses

    Get PDF
    Tese de doutoramento, Informática (Ciência da Computação), Universidade de Lisboa, Faculdade de Ciências, 2018The state machine replication technique is a popular approach for building Byzantine fault-tolerant services. However, despite the widespread adoption of this paradigm for crash fault-tolerant systems, there are still few examples of this paradigm for real Byzantine fault-tolerant systems. Our view of this situation is that there is a lack of robust implementations of Byzantine fault-tolerant state machine replication middleware, and that the performance penalty is too high, specially for geo-replication. These hindrances are tightly coupled to the distributed protocols used for enforcing such resilience. This thesis has the objective of finding methodologies for enhancing robustness and performance of state machine replication systems. The first contribution is Mod-SMaRt, a modular protocol that preserves optimal latency in terms of the communications steps exchanged among processes. By being a modular protocol, it becomes simpler to validate and implement, thus resulting in greater robustness; by also preserving optimal message-exchanges among processes, the protocol is capable of delivering desirable performance. The second contribution is concerned with implementing Mod-SMaRt into BFTSMART, a reliable and high-performance codebase that was maintained and improved over the entire course of the PhD that offers multicore-awareness, reconfiguration support, and a flexible API. The third contribution presents WHEAT, a protocol derived from Mod-SMaRt that uses optimizations shown to be effective in reducing latency via a practical evaluation conducted in a geo distributed environment. We additionally conducted an evaluation of both BFT-SMART and WHEAT applied to a relational database middleware and an ordering service for a permissioned blockchain platform. These evaluations revealed encouraging results for both systems and validated our work conducted in the geo-distributed context.A técnica de replicação máquina de estados é um paradigma popular usado em vários sistemas distribuídos modernos. No entanto, apesar da adoção deste paradigma em sistemas reais tolerantes a faltas por paragem, ainda existem poucos exemplos de sistemas reais tolerantes a faltas bizantinas. Segundo a nossa experiência nesta área de investigação, isto deve-se ao fato de existirem poucas concretizações robustas para replicação máquina de estados tolerante a faltas bizantinas, assim como uma perda de desempenho demasiado elevada, especialmente em ambientes geo-replicados. A razão fundamental para a existência destes obstáculos vem dos protocolos distribuídos necessários para assegurar este tipo de resiliência. Esta tese tem como objetivo explorar metodologias para a robustez e eficiência da replicação máquina de estados. A primeira contribuição da tese é o algoritmo Mod-SMaRt, um protocolo modular que preserva latência ótima em termos de passos de comunicação executados pelos processos. Sendo um protocolo modular, torna-se mais simples de validar e concretizar, o que resulta em maior robustez; ao preservar troca de mensagens ótima entre processos, também é capaz de entregar um desempenho desejável. A segunda contribuição consiste em concretizar o protocolo Mod SMaRt na ferramenta BFT-SMART, uma biblioteca fiável de alto desempenho, mantida e melhorada ao longo de todo o período correspondente ao doutoramento, capaz de suportar arquiteturas multi-núcleo, reconfiguração do grupo de réplicas, e uma API de programação flexível. A terceira contribuição consiste em um protocolo derivado do Mod-SMaRt designado WHEAT, que usa otimizações que demostraram serem eficientes na redução da latência segundo uma avaliação prática em ambiente geo-replicado. Adicionalmente, foram também realizadas avaliações de ambos os protocolos quando aplicados num middleware para base de dados relacionais, e num serviço de ordenação para uma plataforma blockchain. Ambas as avaliações revelam resultados encorajadores para ambos os sistemas e validam o trabalho realizado em contexto geo-distribuído.Projeto IRCoC (PTDC/EEI-SCR/6970/2014); Comissão Europeia, FP7 (Seventh Framework Programme for Research and Technological Development), projetos FP7/2007-2013, ICT-25724

    Towards Efficient File Sharing and Packet Routing in Mobile Opportunistic Networks

    Get PDF
    With the increasing popularity of portable digital devices (e.g., smartphones, laptops, and tablets), mobile opportunistic networks (MONs) [40, 90] consisting of portable devices have attracted much attention recently. MONs are also known as pocket switched networks (PSNs) [52]. MONs can be regarded as a special form of mobile ad hoc networks (MANETs) [7] or delay tolerant networks (DTNs) [35, 56]. In such networks, mobile nodes (devices) move continuously and meet opportunistically. Two mobile nodes can communicate with each other only when they are within the communication range of each other in a peer-to-peer (P2P) manner (i.e., without the need of infrastructures). Therefore, such a network structure can potentially provide file sharing or packet routing services among portable devices without the support of network infrastructures. On the other hand, mobile opportunistic networks often experience frequent network partition, and no end-to-end contemporaneous path can be ensured in the network. These distinctive properties make traditional file sharing or packet routing algorithms in Internet or mobile networks a formidable challenge in MONs. In summary, it is essential and important to achieve efficient file sharing and packet routing algorithms in MONs, which are the key for providing practical and novel services and applications over such networks. In this Dissertation, we develop several methods to resolve the aforementioned challenges. Firstly, we propose two methods to enhance file sharing efficiency in MONs by creating replicas and by leveraging social network properties, respectively. In the first method, we investigate how to create file replicas to optimize file availability for file sharing in MONs. We introduce a new concept of resource for file replication, which considers both node storage and meeting frequency with other nodes. We theoretically study the influence of resource allocation on the average file access delay and derive a resource allocation rule to minimize the average file access delay. We also propose a distributed file replication protocol to realize the deduced optimal file replication rule. In the second method, we leverage social network properties to improve the file searching efficiency in MONs. This method groups common-interest nodes that frequently meet with each other into a community. It takes advantage of node mobility by designating stable nodes, which have the most frequent contact with community members, as community coordinators for intra-community file request forwarding, and highly-mobile nodes that visit other communities frequently as community ambassadors for inter-community file request forwarding. Based on such a community structure, an interest-oriented file searching scheme is proposed to first search local community and then search the community that is most likely to contain the requested file, leading to highly efficient file sharing in MONs. Secondly, we propose two methods to realize efficient packet routing among mobile nodes and among different landmarks in MONs, respectively. The first method utilizes distributed social map to route packets to mobile nodes efficiently with a low-cost in MONs. Each node builds its own social map consisting of nodes it has met and their frequently encountered nodes in a distributed manner. Based on both encountering frequency and social closeness of two linked nodes in the social map, we decide the weight of each link to reflect the packet delivery ability between the two nodes. The social map enables more accurate forwarder selection through a broader view and reduces the cost on information exchange. The second method realizes high-throughput packet routing among different landmarks in MONs. It selects popular places that nodes visit frequently as landmarks and divides the entire MON area into sub-areas represented by landmarks. Nodes transiting between two landmarks relay packets between the two landmarks. The frequency of node transits between two landmarks is measured to represent the forwarding capacity between them, based on which routing tables are built on each landmark to guide packet routing. Finally, packets are routed landmark by landmark to reach their destination landmarks. Extensive analysis and real-trace based experiments are conducted to support the designs in this Dissertation and demonstrate the effectiveness of the proposed methods in comparison with the state-of-art methods. In the future, we plan to further enhance the file sharing and packet routing efficiency by considering more realistic scenarios or including more useful information. We will also investigate the security and privacy issues in the proposed methods

    A P2P Optimistic Fair Exchange (OFE) Scheme For Personal Health Records Using Blockchain Technology

    Get PDF
    In today’s digital world, it is common to exchange sensitive data between different parties. There are many examples of sensitive data or documents that require a digital exchange, such as banking information, insurance data, health records. In many cases, the exchange exists between unknown and untrusted parties. Therefore, it is essential to execute the data exchange over a fair non-repudiation protocol. In digital communication, non-repudiation is undeniable evidence of one’s responsibility regarding the validity of any data he shares/receives. Usually, this is achieved by the use of a cryptographic digital signature. In this case, the parties cannot deny the authenticity of their digital signature. The protocol satisfies the fairness property if and only if it does not give the sender any advantages over the receiver or vice versa, at any step during the exchange process. Combining fair exchange and non-repudiation for digital exchange is critical in many applications and can be acquired with or without the involvement of any trusted third party (TTP). However, without the involvement of TTP, fairness becomes probabilistic, and the involvement of TTP can cause significant dependency on the third party. Therefore, a peer-to-peer (P2P) (aka offline) fair non-repudiation protocol that does not require a trusted third-party is desirable in many applications. Blockchain is designed in such a way that the network can handle the trustless environment and deliver the correct result. Thus, if the exchanges are done leveraging Blockchain, it will ensure true fairness, and at the same time, none of the participants have to deal with the trust issue. In this thesis we propose a P2P fair non-repudiation data exchange scheme by leveraging Blockchain and distributed ledger technology. The scheme combines on-chain and off-chain communication patterns to enable the exchange of personal health records between patients and healthcare providers. We provide an informal reasoning of the proposed scheme. Moreover, we propose a design and implementation agnostic to existing Blockchain platforms to enable unbiased evaluation of the proposed scheme. Finally, we make a comparative analysis of the result derived from our approach with the existing one

    Threshold Encrypted Mempools: Limitations and Considerations

    Full text link
    Encrypted mempools are a class of solutions aimed at preventing or reducing negative externalities of MEV extraction using cryptographic privacy. Mempool encryption aims to hide information related to pending transactions until a block including the transactions is committed, targeting the prevention of frontrunning and similar behaviour. Among the various methods of encryption, threshold schemes are particularly interesting for the design of MEV mitigation mechanisms, as their distributed nature and minimal hardware requirements harmonize with a broader goal of decentralization. This work looks beyond the formal and technical cryptographic aspects of threshold encryption schemes to focus on the market and incentive implications of implementing encrypted mempools as MEV mitigation techniques. In particular, this paper argues that the deployment of such protocols without proper consideration and understanding of market impact invites several undesired outcomes, with the ultimate goal of stimulating further analysis of this class of solutions outside of pure cryptograhic considerations. Included in the paper is an overview of a series of problems, various candidate solutions in the form of mempool encryption techniques with a focus on threshold encryption, potential drawbacks to these solutions, and Osmosis as a case study. The paper targets a broad audience and remains agnostic to blockchain design where possible while drawing from mostly financial examples

    Byzantine fault tolerance from static selection to dynamic switching

    Get PDF
    La Tolérance aux pannes Byzantines (BFT) est de plus en plus crucial avec l'évolution d'applications et en raison de la croissance de l'innovation technologique en informatique. Bien que des dizaines de protocoles BFT aient été introduites dans les années précédentes, leur mise en œuvre ne semble pas satisfaisant. Pour faire face à cette complexité, due à la dependence d'un protocol d'une situation, nous tentons une approche qui permettra de sélectionner un protocole en fonction d'une situation. Ceci nous paraît, en s'inspirant de tout système d'encrage, comme une démarche nécessaire pour aborder la problématique de la BFT. Dans cette thèse, nous introduisons un modèle de sélection ainsi que l'algorithme qui permet de simplifier et d'automatiser le processus d'élection d'un protocole. Ce mécanisme est conçu pour fonctionner selon 3 modes : statique, dynamique et heuristique. Les deux derniers modes, nécessitent l'introduction d'un système réactif, nous ont conduits à présenter un nouveau modèle BFT : Adapt. Il réagit à tout changement et effectue, d'une manière adaptée, la commutation entre les protocoles d'une façon dynamique. Le mode statique permet aux utilisateurs de BFT de choisir un protocole BFT en une seule fois. Ceci est très utile dans les services Web et les " Clouds " où le BFT peut être fournit comme un service inclut dans le contrat (SLA). Ce mode est essentiellement conçu pour les systèmes qui n'ont pas trop d'états fluctuants. Pour ce faire, un processus d'évaluation est en charge de faire correspondre, à priori, les préférences de l'utilisateur aux profils du protocole BFT nommé, en fonction des critères de fiabilité et de performance. Le protocole choisi est celui qui réalise le meilleur score d'évaluation. Le mécanisme est bien automatisé à travers des matrices mathématiques, et produit des sélections qui sont raisonnables. D'autres systèmes peuvent cependant avoir des conditions flottantes, il s'agit de la variation des charges ou de la taille de message qui n'est pas fixe. Dans ce cas, le mode statique ne peut continuer à être efficace et risque de ne pas pouvoir s'adapter aux nouvelles conditions. D'où la nécessité de trouver un moyen permettant de répondre aux nouvelles exigences d'une façon dynamique. Adapt combine un ensemble de protocoles BFT ainsi que leurs mécanismes de commutation pour assurer l'adaptation à l'évolution de l'état du système. Par conséquent, le "Meilleur" protocole est toujours sélectionné selon l'état du système. On obtient ainsi une qualité optimisée de service, i.e., la fiabilité et la performance. Adapt contrôle l'état du système grâce à ses mécanismes d'événements, et utilise une méthode de "Support Vecor Regrssion" pour conduire aux prédictions en temps réel pour l'exécution des protocoles (par exemple, débit, latence, etc.). Ceci nous conduit aussi à un mode heuristique. En utilisant des heuristiques prédéfinies, on optimise les préférences de l'utilisateur afin d'améliorer le processus de sélection. L'évaluation de notre approche montre que le choix du "meilleur" protocole est automatisé et proche de la réalité de la même façon que dans le mode statique. En mode dynamique, Adapt permet toujours d'obtenir la performance optimale des protocoles disponibles. L'évaluation démontre, en plus, que la performance globale du système peut être améliorée de manière significative. Explorer d'autres cas qui ne conduisent pas de basculer entre les protocoles. Ceci est rendu possible grâce à la réalisation des prévisions d'une grande precision qui peuvent atteindre plus de 98% dans de nombreux cas. La thèse montre que cette adaptabilité est rendue possible grâce à l'utilisation des heuristiques dans un mode dynamique.Byzantine Fault Tolerance (BFT) is becoming crucial with the revolution of online applications and due to the increasing number of innovations in computer technologies. Although dozens of BFT protocols have been introduced in the previous decade, their adoption by practitioners sounds disappointing. To some extant, this indicates that existing protocols are, perhaps, not yet too convincing or satisfactory. The problem is that researchers are still trying to establish 'the best protocol' using traditional methods, e.g., through designing new protocols. However, theoretical and experimental analyses demonstrate that it is hard to achieve one-size-fits-all BFT protocols. Indeed, we believe that looking for smarter tac-tics like 'fasten fragile sticks with a rope to achieve a solid stick' is necessary to circumvent the issue. In this thesis, we introduce the first BFT selection model and algorithm that automate and simplify the election process of the 'preferred' BFT protocol among a set of candidate ones. The selection mechanism operates in three modes: Static, Dynamic, and Heuristic. For the two latter modes, we present a novel BFT system, called Adapt, that reacts to any potential changes in the system conditions and switches dynamically between existing BFT protocols, i.e., seeking adaptation. The Static mode allows BFT users to choose a single BFT protocol only once. This is quite useful in Web Services and Clouds where BFT can be sold as a service (and signed in the SLA contract). This mode is basically designed for systems that do not have too fuctuating states. In this mode, an evaluation process is in charge of matching the user preferences against the profiles of the nominated BFT protocols considering both: reliability, and performance. The elected protocol is the one that achieves the highest evaluation score. The mechanism is well automated via mathematical matrices, and produces selections that are reasonable and close to reality. Some systems, however, may experience fluttering conditions, like variable contention or message payloads. In this case, the static mode will not be e?cient since a chosen protocol might not fit the new conditions. The Dynamic mode solves this issue. Adapt combines a collection of BFT protocols and switches between them, thus, adapting to the changes of the underlying system state. Consequently, the 'preferred' protocol is always polled for each system state. This yields an optimal quality of service, i.e., reliability and performance. Adapt monitors the system state through its Event System, and uses a Support Vector Regression method to conduct run time predictions for the performance of the protocols (e.g., throughput, latency, etc). Adapt also operates in a Heuristic mode. Using predefined heuristics, this mode optimizes user preferences to improve the selection process. The evaluation of our approach shows that selecting the 'preferred' protocol is automated and close to reality in the static mode. In the Dynamic mode, Adapt always achieves the optimal performance among available protocols. The evaluation demonstrates that the overall system performance can be improved significantly too. Other cases explore that it is not always worthy to switch between protocols. This is made possible through conducting predictions with high accuracy, that can reach more than 98% in many cases. Finally, the thesis shows that Adapt can be smarter through using heursitics

    Real-world Machine Learning Systems: A survey from a Data-Oriented Architecture Perspective

    Full text link
    Machine Learning models are being deployed as parts of real-world systems with the upsurge of interest in artificial intelligence. The design, implementation, and maintenance of such systems are challenged by real-world environments that produce larger amounts of heterogeneous data and users requiring increasingly faster responses with efficient resource consumption. These requirements push prevalent software architectures to the limit when deploying ML-based systems. Data-oriented Architecture (DOA) is an emerging concept that equips systems better for integrating ML models. DOA extends current architectures to create data-driven, loosely coupled, decentralised, open systems. Even though papers on deployed ML-based systems do not mention DOA, their authors made design decisions that implicitly follow DOA. The reasons why, how, and the extent to which DOA is adopted in these systems are unclear. Implicit design decisions limit the practitioners' knowledge of DOA to design ML-based systems in the real world. This paper answers these questions by surveying real-world deployments of ML-based systems. The survey shows the design decisions of the systems and the requirements these satisfy. Based on the survey findings, we also formulate practical advice to facilitate the deployment of ML-based systems. Finally, we outline open challenges to deploying DOA-based systems that integrate ML models.Comment: Under revie

    A Survey on Consensus Mechanisms and Mining Strategy Management in Blockchain Networks

    Full text link
    © 2013 IEEE. The past decade has witnessed the rapid evolution in blockchain technologies, which has attracted tremendous interests from both the research communities and industries. The blockchain network was originated from the Internet financial sector as a decentralized, immutable ledger system for transactional data ordering. Nowadays, it is envisioned as a powerful backbone/framework for decentralized data processing and data-driven self-organization in flat, open-access networks. In particular, the plausible characteristics of decentralization, immutability, and self-organization are primarily owing to the unique decentralized consensus mechanisms introduced by blockchain networks. This survey is motivated by the lack of a comprehensive literature review on the development of decentralized consensus mechanisms in blockchain networks. In this paper, we provide a systematic vision of the organization of blockchain networks. By emphasizing the unique characteristics of decentralized consensus in blockchain networks, our in-depth review of the state-of-the-art consensus protocols is focused on both the perspective of distributed consensus system design and the perspective of incentive mechanism design. From a game-theoretic point of view, we also provide a thorough review of the strategy adopted for self-organization by the individual nodes in the blockchain backbone networks. Consequently, we provide a comprehensive survey of the emerging applications of blockchain networks in a broad area of telecommunication. We highlight our special interest in how the consensus mechanisms impact these applications. Finally, we discuss several open issues in the protocol design for blockchain consensus and the related potential research directions

    Performance et fiabilité des protocoles de tolérance aux fautes

    Get PDF
    In the modern era of on-demand ubiquitous computing, where applications and services are deployed in well-provisioned, well-managed infrastructures, administered by large groups of cloud providers such as Amazon, Google, Microsoft, Oracle, etc., performance and dependability of the systems have become primary objectives.Cloud computing has evolved from questioning the Quality-of-Service (QoS) making factors such as availability, reliability, liveness, safety and security, extremely necessary in the complete definition of a system. Indeed, computing systems must be resilient in the presence of failures and attacks to prevent their inaccessibility which can lead to expensive maintenance costs and loss of business. With the growing components in cloud systems, faults occur more commonly resulting in frequent cloud outages and failing to guarantee the QoS. Cloud providers have seen episodic incidents of arbitrary (i.e., Byzantine) faults where systems demonstrate unpredictable conducts, which includes incorrect response of a client's request, sending corrupt messages, intentional delaying of messages, disobeying the ordering of the requests, etc.This has led researchers to extensively study Byzantine Fault Tolerance (BFT) and propose numerous protocols and software prototypes. These BFT solutions not only provide consistent and available services despite arbitrary failures, they also intend to reduce the cost and performance overhead incurred by the underlying systems. However, BFT prototypes have been evaluated in ad-hoc settings, considering either ideal conditions or very limited faulty scenarios. This fails to convince the practitioners for the adoption of BFT protocols in a distributed system. Some argue on the applicability of expensive and complex BFT to tolerate arbitrary faults while others are skeptical on the adeptness of BFT techniques. This thesis precisely addresses this problem and presents a comprehensive benchmarking environment which eases the setup of execution scenarios to analyze and compare the effectiveness and robustness of these existing BFT proposals.Specifically, contributions of this dissertation are as follows.First, we introduce a generic architecture for benchmarking distributed protocols. This architecture, comprises reusable components for building a benchmark for performance and dependability analysis of distributed protocols. The architecture allows defining workload and faultload, and their injection. It also produces performance, dependability, and low-level system and network statistics. Furthermore, the thesis presents the benefits of a general architecture.Second, we present BFT-Bench, the first BFT benchmark, for analyzing and comparing representative BFT protocols under identical scenarios. BFT-Bench allows end-users evaluate different BFT implementations under user-defined faulty behaviors and varying workloads. It allows automatic deploying these BFT protocols in a distributed setting with ability to perform monitoring and reporting of performance and dependability aspects. In our results, we empirically compare some existing state-of-the-art BFT protocols, in various workloads and fault scenarios with BFT-Bench, demonstrating its effectiveness in practice.Overall, this thesis aims to make BFT benchmarking easy to adopt by developers and end-users of BFT protocols.BFT-Bench framework intends to help users to perform efficient comparisons of competing BFT implementations, and incorporating effective solutions to the detected loopholes in the BFT prototypes. Furthermore, this dissertation strengthens the belief in the need of BFT techniques for ensuring correct and continued progress of distributed systems during critical fault occurrence.A l'ère de l’informatique omniprésente et à la demande, où les applications et les services sont déployés sur des infrastructures bien gérées et approvisionnées par des grands groupes de fournisseurs d’informatique en nuage (Cloud Computing), tels Amazon,Google,Microsoft,Oracle, etc, la performance et la fiabilité de ces systèmes sont devenues des objectifs primordiaux. Cette informatique a rendu particulièrement nécessaire la prise en compte des facteurs de la Qualité de Service (QoS), telles que la disponibilité, la fiabilité, la vivacité, la sureté et la sécurité,dans la définition complète d’un système. En effet, les systèmes informatiques doivent être résistants aussi bien aux défaillances qu’aux attaques et ce, afin d'éviter qu'ils ne deviennent inaccessibles, entrainent des couts de maintenance importants et la perte de parts de marché. L'augmentation de la taille et la complexité des systèmes en nuage rend de plus en plus commun les défauts, augmentant la fréquence des pannes, et n’offrant donc plus la Garantie de Service visée. Les fournisseurs d’informatique en nuage font ainsi face épisodiquement à des fautes arbitraires, dites Byzantines, durant lesquelles les systèmes ont des comportements imprévisibles.Ce constat a amené les chercheurs à s’intéresser de plus en plus à la tolérance aux fautes byzantines (BFT) et à proposer de nombreux prototypes de protocoles et logiciels. Ces solutions de BFT visent non seulement à fournir des services cohérents et continus malgré des défaillances arbitraires, mais cherchent aussi à réduire le coût et l’impact sur les performances des systèmes sous-jacents. Néanmoins les prototypes BFT ont été évalués le plus souvent dans des contextes ad hoc, soit dans des conditions idéales, soit en limitant les scénarios de fautes. C’est pourquoi ces protocoles de BFT n’ont pas réussi à convaincre les professionnels des systèmes distribués de les adopter. Cette thèse entend répondre à ce problème en proposant un environnement complet de banc d’essai dont le but est de faciliter la création de scénarios d'exécution utilisables pour aussi bien analyser que comparer l'efficacité et la robustesse des propositions BFT existantes. Les contributions de cette thèse sont les suivantes :Nous introduisons une architecture générique pour analyser des protocoles distribués. Cette architecture comprend des composants réutilisables permettant la mise en œuvre d’outils de mesure des performances et d’analyse de la fiabilité des protocoles distribués. Cette architecture permet de définir la charge de travail, de défaillance, et l’injection de ces dernières. Elle fournit aussi des statistiques de performance, de fiabilité du système de bas niveau et du réseau. En outre, cette thèse présente les bénéfices d’une architecture générale.Nous présentons BFT-Bench, le premier système de banc d’essai de la BFT, pour l'analyse et la comparaison d’un panel de protocoles BFT utilisés dans des situations identiques. BFT-Bench permet aux utilisateurs d'évaluer des implémentations différentes pour lesquels ils définissent des comportements défaillants avec différentes charges de travail.Il permet de déployer automatiquement les protocoles BFT étudiés dans un environnement distribué et offre la possibilité de suivre et de rendre compte des aspects performance et fiabilité. Parmi nos résultats, nous présentons une comparaison de certains protocoles BFT actuels, réalisée avec BFT-Bench, en définissant différentes charges de travail et différents scénarii de fautes. Cette réelle application de BFT-Bench en démontre l’efficacité.Le logiciel BFT-Bench a été conçu en ce sens pour aider les utilisateurs à comparer efficacement différentes implémentations de BFT et apporter des solutions effectives aux lacunes identifiées des prototypes BFT. De plus, cette thèse défend l’idée que les techniques BFT sont nécessaires pour assurer un fonctionnement continu et correct des systèmes distribués confrontés à des situations critiques

    Automating Topology Aware Mapping for Supercomputers

    Get PDF
    Petascale machines with hundreds of thousands of cores are being built. These machines have varying interconnect topologies and large network diameters. Computation is cheap and communication on the network is becoming the bottleneck for scaling of parallel applications. Network contention, specifically, is becoming an increasingly important factor affecting overall performance. The broad goal of this dissertation is performance optimization of parallel applications through reduction of network contention. Most parallel applications have a certain communication topology. Mapping of tasks in a parallel application based on their communication graph, to the physical processors on a machine can potentially lead to performance improvements. Mapping of the communication graph for an application on to the interconnect topology of a machine while trying to localize communication is the research problem under consideration. The farther different messages travel on the network, greater is the chance of resource sharing between messages. This can create contention on the network for networks commonly used today. Evaluative studies in this dissertation show that on IBM Blue Gene and Cray XT machines, message latencies can be severely affected under contention. Realizing this fact, application developers have started paying attention to the mapping of tasks to physical processors to minimize contention. Placement of communicating tasks on nearby physical processors can minimize the distance traveled by messages and reduce the chances of contention. Performance improvements through topology aware placement for applications such as NAMD and OpenAtom are used to motivate this work. Building on these ideas, the dissertation proposes algorithms and techniques for automatic mapping of parallel applications to relieve the application developers of this burden. The effect of contention on message latencies is studied in depth to guide the design of mapping algorithms. The hop-bytes metric is proposed for the evaluation of mapping algorithms as a better metric than the previously used maximum dilation metric. The main focus of this dissertation is on developing topology aware mapping algorithms for parallel applications with regular and irregular communication patterns. The automatic mapping framework is a suite of such algorithms with capabilities to choose the best mapping for a problem with a given communication graph. The dissertation also briefly discusses completely distributed mapping techniques which will be imperative for machines of the future.published or submitted for publicationnot peer reviewe
    • …
    corecore