740 research outputs found

    Multispectral segmentation of whole-brain MRI

    Get PDF
    Magnetic Resonance Imaging (MRI) is a widely used medical technology for diagnosis and detection of various tissue abnormalities, tumor detection, and in evaluation of either residual or recurrent tumors. This thesis work exploits MRI information acquired on brain tumor structure and physiological properties and uses a novel image segmentation technique to better delineate tissue differences.;MR image segmentation will be important in distinguishing between boundaries of different tissues in the brain. A segmentation software tool was developed that combines the different types of clinical MR images and presents them as a single colored image. This technique is based on the fuzzy c-means (FCM) clustering algorithm. The MR data sets are used to form five-dimensional feature vectors. These vectors are segmented by FCM into six tissue classes for normal brains and nine tissue classes for human brains with tumors. The segmented images are then compared with segmentation performed using Statistical Parametric Mapping (SPM2)---software that is commonly used for brain tissue segmentation. The results from segmenting the whole volume MRI using FCM show better distinction between tumor tissues than SPM2

    Semi Automatic Segmentation of a Rat Brain Atlas

    Get PDF
    A common approach to segment an MRI dataset is to use a standard atlas to identify different regions of interest. Existing 2D atlases, prepared by freehand tracings of templates, are seldom complete for 3D volume segmentation. Although many of these atlases are prepared in graphics packages like Adobe Illustrator® (AI), which present the geometrical entities based on their mathematical description, the drawings are not numerically robust. This work presents an automatic conversion of graphical atlases suitable for further usage such as creation of a segmented 3D numerical atlas. The system begins with DXF (Drawing Exchange Format) files of individual atlas drawings. The drawing entities are mostly in cubic spline format. Each segment of the spline is reduced to polylines, which reduces the complexity of data. The system merges overlapping nodes and polylines to make the database of the drawing numerically integrated, i.e. each location within the drawing is referred by only one point, each line is uniquely defined by only two nodes, etc. Numerous integrity diagnostics are performed to eliminate duplicate or overlapping lines, extraneous markers, open-ended loops, etc. Numerically intact closed loops are formed using atlas labels as seed points. These loops specify the boundary and tissue type for each area. The final results preserve the original atlas with its 1272 different neuroanatomical regions which are complete, non-overlapping, contiguous sub-areas whose boundaries are composed of unique polyline

    Automatic signal and image-based assessments of spinal cord injury and treatments.

    Get PDF
    Spinal cord injury (SCI) is one of the most common sources of motor disabilities in humans that often deeply impact the quality of life in individuals with severe and chronic SCI. In this dissertation, we have developed advanced engineering tools to address three distinct problems that researchers, clinicians and patients are facing in SCI research. Particularly, we have proposed a fully automated stochastic framework to quantify the effects of SCI on muscle size and adipose tissue distribution in skeletal muscles by volumetric segmentation of 3-D MRI scans in individuals with chronic SCI as well as non-disabled individuals. We also developed a novel framework for robust and automatic activation detection, feature extraction and visualization of the spinal cord epidural stimulation (scES) effects across a high number of scES parameters to build individualized-maps of muscle recruitment patterns of scES. Finally, in the last part of this dissertation, we introduced an EMG time-frequency analysis framework that implements EMG spectral analysis and machine learning tools to characterize EMG patterns resulting in independent or assisted standing enabled by scES, and identify the stimulation parameters that promote muscle activation patterns more effective for standing. The neurotechnological advancements proposed in this dissertation have greatly benefited SCI research by accelerating the efforts to quantify the effects of SCI on muscle size and functionality, expanding the knowledge regarding the neurophysiological mechanisms involved in re-enabling motor function with epidural stimulation and the selection of stimulation parameters and helping the patients with complete paralysis to achieve faster motor recovery

    Volume and shape in feature space on adaptive FCM in MRI segmentation.

    Get PDF
    Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster\u27s shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification

    Leveraging Supervoxels for Medical Image Volume Segmentation With Limited Supervision

    Get PDF
    The majority of existing methods for machine learning-based medical image segmentation are supervised models that require large amounts of fully annotated images. These types of datasets are typically not available in the medical domain and are difficult and expensive to generate. A wide-spread use of machine learning based models for medical image segmentation therefore requires the development of data-efficient algorithms that only require limited supervision. To address these challenges, this thesis presents new machine learning methodology for unsupervised lung tumor segmentation and few-shot learning based organ segmentation. When working in the limited supervision paradigm, exploiting the available information in the data is key. The methodology developed in this thesis leverages automatically generated supervoxels in various ways to exploit the structural information in the images. The work on unsupervised tumor segmentation explores the opportunity of performing clustering on a population-level in order to provide the algorithm with as much information as possible. To facilitate this population-level across-patient clustering, supervoxel representations are exploited to reduce the number of samples, and thereby the computational cost. In the work on few-shot learning-based organ segmentation, supervoxels are used to generate pseudo-labels for self-supervised training. Further, to obtain a model that is robust to the typically large and inhomogeneous background class, a novel anomaly detection-inspired classifier is proposed to ease the modelling of the background. To encourage the resulting segmentation maps to respect edges defined in the input space, a supervoxel-informed feature refinement module is proposed to refine the embedded feature vectors during inference. Finally, to improve trustworthiness, an architecture-agnostic mechanism to estimate model uncertainty in few-shot segmentation is developed. Results demonstrate that supervoxels are versatile tools for leveraging structural information in medical data when training segmentation models with limited supervision

    Inter-comparison of medical image segmentation algorithms

    Get PDF
    Segmentation of images is a vital part of medical image processing, and MRI (Magnetic Resonance Imaging) is already recognized as a very important tool for clinical diagnosis. In this thesis, comparisons between different segmentation algorithms are carried out, specifically on brain MRI images. Initial parts of the thesis provide the background to the project, and an introduction to the basic principles of MRI, respectively, followed by parameter definitions and MRI image artifacts. The next part briefly covers various image pre-processing techniques which are required, and this is followed with a review of the major segmentation techniques which are available, including thresholding, region growing, clustering, and K-Means clustering. The concept of fuzzy logic is also introduced here, and the chapter concludes with a discussion of fuzzy logic based segmentation algorithms such as Fuzzy C-Means (FCM) and Improved Fuzzy C-Means (IFCM) clustering algorithms. The following part provides details concerning the source, type and parameters of the data (images) used for this thesis. Evaluation and inter-comparisons between a number of different segmentation algorithms are given in near concluding part, finally, conclusions and suggestions for future research are provided in last part. Qualitative comparisons on real images and quantitative comparisons on simulated images were performed. Both qualitative and quantitative comparisons demonstrated that fuzzy logic based segmentation algorithms are superior in comparison with classical segmentation algorithms. Edge-based segmentation algorithms demonstrated the poorest performance of all; K-means and IFCM clustering algorithms performed better, and FCM demonstrated the best performance of all. However, it should be noted that IFCM was not properly evaluated due to time restrictions in code generation, testing and evaluation.Segmentation of images is a vital part of medical image processing, and MRI (Magnetic Resonance Imaging) is already recognized as a very important tool for clinical diagnosis. In this thesis, comparisons between different segmentation algorithms are carried out, specifically on brain MRI images. Initial parts of the thesis provide the background to the project, and an introduction to the basic principles of MRI, respectively, followed by parameter definitions and MRI image artifacts. The next part briefly covers various image pre-processing techniques which are required, and this is followed with a review of the major segmentation techniques which are available, including thresholding, region growing, clustering, and K-Means clustering. The concept of fuzzy logic is also introduced here, and the chapter concludes with a discussion of fuzzy logic based segmentation algorithms such as Fuzzy C-Means (FCM) and Improved Fuzzy C-Means (IFCM) clustering algorithms. The following part provides details concerning the source, type and parameters of the data (images) used for this thesis. Evaluation and inter-comparisons between a number of different segmentation algorithms are given in near concluding part, finally, conclusions and suggestions for future research are provided in last part. Qualitative comparisons on real images and quantitative comparisons on simulated images were performed. Both qualitative and quantitative comparisons demonstrated that fuzzy logic based segmentation algorithms are superior in comparison with classical segmentation algorithms. Edge-based segmentation algorithms demonstrated the poorest performance of all; K-means and IFCM clustering algorithms performed better, and FCM demonstrated the best performance of all. However, it should be noted that IFCM was not properly evaluated due to time restrictions in code generation, testing and evaluation

    Automatic pharynx and larynx cancer segmentation framework (PLCSF) on contrast enhanced MR images

    Get PDF
    A novel and effective pharynx and larynx cancer segmentation framework (PLCSF) is presented for automatic base of tongue and larynx cancer segmentation from gadolinium-enhanced T1-weighted magnetic resonance images (MRI). The aim of the proposed PLCSF is to assist clinicians in radiotherapy treatment planning. The initial processing of MRI data in PLCSF includes cropping of region of interest; reduction of artefacts and detection of the throat region for the location prior. Further, modified fuzzy c-means clustering is developed to robustly separate candidate cancer pixels from other tissue types. In addition, region-based level set method is evolved to ensure spatial smoothness for the final segmentation boundary after noise removal using non-linear and morphological filtering. Validation study of PLCSF on 102 axial MRI slices demonstrate mean dice similarity coefficient of 0.79 and mean modified Hausdorff distance of 2.2 mm when compared with manual segmentations. Comparison of PLCSF with other algorithms validates the robustness of the PLCSF. Inter- and intra-variability calculations from manual segmentations suggest that PLCSF can help to reduce the human subjectivity
    corecore