1,837 research outputs found

    A multiprocessor based packet-switch: performance analysis of the communication infrastructure

    Get PDF
    The intra-chip communication infrastructures are receiving always more attention since they are becoming a crucial part in the development of current SoCs. Due to the high availability of pre-characterized hard-IP, the complexity of the design is moving toward global interconnections which are introducing always more constraints at each technology node. Power consumption, timing closure, bandwidth requirements, time to market, are some of the factors that are leading to the proposal of new solutions for next generation multi-million SoCs. The need of high programmable systems and the high gate-count availability is moving always more attention on multiprocessors systems (MP-SoC) and so an adequate solution must be found for the communication infrastructure. One of the most promising technologies is the Network-On-Chip (NoC) architecture, which seems to better fit with the new demanding complexity of such systems. Before starting to develop new solutions, it is crucial to fully understand if and when current bus architectures introduce strong limitations in the development of high speed systems. This article describes a case study of a multiprocessor based ethernet packet-switch application with a shared-bus communication infrastructure. This system aims to depict all the bottlenecks which a shared-bus introduces under heavy load. What emerges from this analysis is that, as expected, a shared-bus is not scalable and it strongly limits whole system performances. These results strengthen the hypothesis that new communication architectures (like the NoC) must be found

    Design Approach to Implementation Of Arbitration Algorithm In Shared Bus Architectures (MPSoC)

    Get PDF
    The multiprocessor SoC designs have more than one processor and huge memory on the same chip. SoC consists of hardware cores and software cores ,multiple processors, embedded DRAM and connectors between cores .A wide range of MPSOC architectures have been developed over the past decade. This paper surveys the history of various On-Chip communication architectures present in the design of MPSoC. This acts as a primary factor of overall performance in complex SoC designs. Some of the various techniques that have driven the design of MpSoC has been discussed. Dynamically configurable communication architectures are found to improve the system performance. Currently On-chip interconnection networks are mostly implemented using shared buses which are the most common medium. The arbitration plays a crucial role in determining performance of bus-based system, as it assigns priorities, with which processor is granted the access to the shared communication resources. In the conventional arbitration algorithms there are some drawbacks such as bus starvation problem and low system performance. The bus should provide each component a flexible and utmost share of on-chip communication bandwidth and should improve the latency in access of the shared bus. The performance of SoC is improved using the probabilistic round robin algorithm with regard to the parameters, latency.Thus in this paper various issues related to bus arbitration related to design of MPSoC is analysed

    Fog computing, applications , security and challenges, review

    Get PDF
    The internet of things originates a world where on daily basis objects can join the internet and interchange information and in addition process, store, gather them from the nearby environment, and effectively mediate on it. A remarkable number of services might be imagined by abusing the internet of things. Fog computing which is otherwise called edge computing was introduced in 2012 as a considered is a prioritized choice for the internet of things applications. As fog computing extend services of cloud near to the edge of the network and make possible computations, communications, and storage services in proximity to the end user. Fog computing cannot only provide low latency, location awareness but also enhance real-time applications, quality of services, mobility, security and privacy in the internet of things applications scenarios. In this paper, we will summarize and overview fog computing model architecture, characteristic, similar paradigm and various applications in real-time scenarios such as smart grid, traffic control system and augmented reality. Finally, security challenges are presented

    On-chip interconnect schemes for reconfigurable system-on-chip

    Get PDF
    On-chip communication architectures can have a great influence on the speed and area of System-on-Chip designs, and this influence is expected to be even more pronounced on reconfigurable System-on-Chip (rSoC) designs. To date, little research has been conducted on the performance implications of different on-chip communication architectures for rSoC designs. This paper motivates the need for such research and analyses current and proposed interconnect technologies for rSoC design. The paper also describes work in progress on implementation of a simple serial bus and a packet-switched network, as well as a methodology for quantitatively evaluating the performance of these interconnection structures in comparison to conventional buses

    Run-time Spatial Mapping of Streaming Applications to Heterogeneous Multi-Processor Systems

    Get PDF
    In this paper, we define the problem of spatial mapping. We present reasons why performing spatial mappings at run-time is both necessary and desirable. We propose what is—to our knowledge—the first attempt at a formal description of spatial mappings for the embedded real-time streaming application domain. Thereby, we introduce criteria for a qualitative comparison of these spatial mappings. As an illustration of how our formalization relates to practice, we relate our own spatial mapping algorithm to the formal model

    Support for Programming Models in Network-on-Chip-based Many-core Systems

    Get PDF

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed

    Studies on Core-Based Testing of System-on-Chips Using Functional Bus and Network-on-Chip Interconnects

    Get PDF
    The tests of a complex system such as a microprocessor-based system-onchip (SoC) or a network-on-chip (NoC) are difficult and expensive. In this thesis, we propose three core-based test methods that reuse the existing functional interconnects-a flat bus, hierarchical buses of multiprocessor SoC's (MPSoC), and a N oC-in order to avoid the silicon area cost of a dedicated test access mechanism (TAM). However, the use of functional interconnects as functional TAM's introduces several new problems. During tests, the interconnects-including the bus arbitrator, the bus bridges, and the NoC routers-operate in the functional mode to transport the test stimuli and responses, while the core under tests (CUT) operate in the test mode. Second, the test data is transported to the CUT through the functional bus, and not directly to the test port. Therefore, special core test wrappers that can provide the necessary control signals required by the different functional interconnect are proposed. We developed two types of wrappers, one buffer-based wrapper for the bus-based systems and another pair of complementary wrappers for the NoCbased systems. Using the core test wrappers, we propose test scheduling schemes for the three functionally different types of interconnects. The test scheduling scheme for a flat bus is developed based on an efficient packet scheduling scheme that minimizes both the buffer sizes and the test time under a power constraint. The schedulingscheme is then extended to take advantage of the hierarchical bus architecture of the MPSoC systems. The third test scheduling scheme based on the bandwidth sharing is developed specifically for the NoC-based systems. The test scheduling is performed under the objective of co-optimizing the wrapper area cost and the resulting test application time using the two complementary NoC wrappers. For each of the proposed methodology for the three types of SoC architec .. ture, we conducted a thorough experimental evaluation in order to verify their effectiveness compared to other methods

    Hardware/Software Co-design for Multicore Architectures

    Get PDF
    Siirretty Doriast
    • …
    corecore