1,886 research outputs found

    Contributions to unsupervised and supervised learning with applications in digital image processing

    Get PDF
    311 p. : il.[EN]This Thesis covers a broad period of research activities with a commonthread: learning processes and its application to image processing. The twomain categories of learning algorithms, supervised and unsupervised, have beentouched across these years. The main body of initial works was devoted tounsupervised learning neural architectures, specially the Self Organizing Map.Our aim was to study its convergence properties from empirical and analyticalviewpoints.From the digital image processing point of view, we have focused on twobasic problems: Color Quantization and filter design. Both problems have beenaddressed from the context of Vector Quantization performed by CompetitiveNeural Networks. Processing of non-stationary data is an interesting paradigmthat has not been explored with Competitive Neural Networks. We have statesthe problem of Non-stationary Clustering and related Adaptive Vector Quantizationin the context of image sequence processing, where we naturally havea Frame Based Adaptive Vector Quantization. This approach deals with theproblem as a sequence of stationary almost-independent Clustering problems.We have also developed some new computational algorithms for Vector Quantizationdesign.The works on supervised learning have been sparsely distributed in time anddirection. First we worked on the use of Self Organizing Map for the independentmodeling of skin and no-skin color distributions for color based face localization. Second, we have collaborated in the realization of a supervised learning systemfor tissue segmentation in Magnetic Resonance Imaging data. Third, we haveworked on the development, implementation and experimentation with HighOrder Boltzmann Machines, which are a very different learning architecture.Finally, we have been working on the application of Sparse Bayesian Learningto a new kind of classification systems based on Dendritic Computing. This lastresearch line is an open research track at the time of writing this Thesis

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    Magnitude Sensitive Competitive Neural Networks

    Get PDF
    En esta Tesis se presentan un conjunto de redes neuronales llamadas Magnitude Sensitive Competitive Neural Networks (MSCNNs). Se trata de un conjunto de algoritmos de Competitive Learning que incluyen un término de magnitud como un factor de modulación de la distancia usada en la competición. Al igual que otros métodos competitivos, MSCNNs realizan la cuantización vectorial de los datos, pero el término de magnitud guía el entrenamiento de los centroides de modo que se representan con alto detalle las zonas deseadas, definidas por la magnitud. Estas redes se han comparado con otros algoritmos de cuantización vectorial en diversos ejemplos de interpolación, reducción de color, modelado de superficies, clasificación, y varios ejemplos sencillos de demostración. Además se introduce un nuevo algoritmo de compresión de imágenes, MSIC (Magnitude Sensitive Image Compression), que hace uso de los algoritmos mencionados previamente, y que consigue una compresión de la imagen variable según una magnitud definida por el usuario. Los resultados muestran que las nuevas redes neuronales MSCNNs son más versátiles que otros algoritmos de aprendizaje competitivo, y presentan una clara mejora en cuantización vectorial sobre ellos cuando el dato está sopesado por una magnitud que indica el ¿interés¿ de cada muestra

    Generative Models for Novelty Detection Applications in abnormal event and situational changedetection from data series

    Get PDF
    Novelty detection is a process for distinguishing the observations that differ in some respect from the observations that the model is trained on. Novelty detection is one of the fundamental requirements of a good classification or identification system since sometimes the test data contains observations that were not known at the training time. In other words, the novelty class is often is not presented during the training phase or not well defined. In light of the above, one-class classifiers and generative methods can efficiently model such problems. However, due to the unavailability of data from the novelty class, training an end-to-end model is a challenging task itself. Therefore, detecting the Novel classes in unsupervised and semi-supervised settings is a crucial step in such tasks. In this thesis, we propose several methods to model the novelty detection problem in unsupervised and semi-supervised fashion. The proposed frameworks applied to different related applications of anomaly and outlier detection tasks. The results show the superior of our proposed methods in compare to the baselines and state-of-the-art methods

    An efficient and straightforward online quantization method for a data stream through remove-birth updating

    Full text link
    The growth of network-connected devices is creating an explosion of data, known as big data, and posing significant challenges to efficient data analysis. This data is generated continuously, creating a dynamic flow known as a data stream. The characteristics of a data stream may change dynamically, and this change is known as concept drift. Consequently, a method for handling data streams must efficiently reduce their volume while dynamically adapting to these changing characteristics. This paper proposes a simple online vector quantization method for concept drift. The proposed method identifies and replaces units with low win probability through remove-birth updating, thus achieving a rapid adaptation to concept drift. Furthermore, the results of this study show that the proposed method can generate minimal dead units even in the presence of concept drift. This study also suggests that some metrics calculated from the proposed method will be helpful for drift detection
    corecore