4,831 research outputs found

    A large annotated corpus for learning natural language inference

    Full text link
    Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time.Comment: To appear at EMNLP 2015. The data will be posted shortly before the conference (the week of 14 Sep) at http://nlp.stanford.edu/projects/snli

    Sequence to Sequence -- Video to Text

    Full text link
    Real-world videos often have complex dynamics; and methods for generating open-domain video descriptions should be sensitive to temporal structure and allow both input (sequence of frames) and output (sequence of words) of variable length. To approach this problem, we propose a novel end-to-end sequence-to-sequence model to generate captions for videos. For this we exploit recurrent neural networks, specifically LSTMs, which have demonstrated state-of-the-art performance in image caption generation. Our LSTM model is trained on video-sentence pairs and learns to associate a sequence of video frames to a sequence of words in order to generate a description of the event in the video clip. Our model naturally is able to learn the temporal structure of the sequence of frames as well as the sequence model of the generated sentences, i.e. a language model. We evaluate several variants of our model that exploit different visual features on a standard set of YouTube videos and two movie description datasets (M-VAD and MPII-MD).Comment: ICCV 2015 camera-ready. Includes code, project page and LSMDC challenge result

    Computational models for semantic textual similarity

    Get PDF
    164 p.The overarching goal of this thesis is to advance on computational models of meaning and their evaluation. To achieve this goal we define two tasks and develop state-of-the-art systems that tackle both task: Semantic Textual Similarity (STS) and Typed Similarity.STS aims to measure the degree of semantic equivalence between two sentences by assigning graded similarity values that capture the intermediate shades of similarity. We have collected pairs of sentences to construct datasets for STS, a total of 15,436 pairs of sentences, being by far the largest collection of data for STS.We have designed, constructed and evaluated a new approach to combine knowledge-based and corpus-based methods using a cube. This new system for STS is on par with state-of-the-art approaches that make use of Machine Learning (ML) without using any of it, but ML can be used on this system, improving the results.Typed Similarity tries to identify the type of relation that holds between a pair of similar items in a digital library. Providing a reason why items are similar has applications in recommendation, personalization, and search. A range of types of similarity in this collection were identified and a set of 1,500 pairs of items from the collection were annotated using crowdsourcing.Finally, we present systems capable of resolving the Typed Similarity task. The best system resulted in a real-world application to recommend similar items to users in an online digital library

    Sequence Classification Based on Delta-Free Sequential Pattern

    Get PDF
    International audienceSequential pattern mining is one of the most studied and challenging tasks in data mining. However, the extension of well-known methods from many other classical patterns to sequences is not a trivial task. In this paper we study the notion of δ-freeness for sequences. While this notion has extensively been discussed for itemsets, this work is the first to extend it to sequences. We define an efficient algorithm devoted to the extraction of δ-free sequential patterns. Furthermore, we show the advantage of the δ-free sequences and highlight their importance when building sequence classifiers, and we show how they can be used to address the feature selection problem in statistical classifiers, as well as to build symbolic classifiers which optimizes both accuracy and earliness of predictions

    Extracting fine-grained economic events from business news

    Get PDF
    Based on a recently developed fine-grained event extraction dataset for the economic domain, we present in a pilot study for supervised economic event extraction. We investigate how a state-of-the-art model for event extraction performs on the trigger and argument identification and classification. While F1-scores of above 50{%} are obtained on the task of trigger identification, we observe a large gap in performance compared to results on the benchmark ACE05 dataset. We show that single-token triggers do not provide sufficient discriminative information for a fine-grained event detection setup in a closed domain such as economics, since many classes have a large degree of lexico-semantic and contextual overlap
    corecore