13 research outputs found

    A comparison of CMB- and HLA-based approaches to type I interoperability reference model problems for COTS-based distributed simulation

    Get PDF
    Commercial-off-the-shelf (COTS) simulation packages (CSPs) are software used by many simulation modellers to build and experiment with models of various systems in domains such as manufacturing, health, logistics and commerce. COTS distributed simulation deals with the interoperation of CSPs and their models. Such interoperability has been classified into six interoperability reference models. As part of an on-going standardisation effort, this paper introduces the COTS Simulation Package Emulator, a proposed benchmark that can be used to investigate Type I interoperability problems in COTS distributed simulation. To demonstrate its use, two approaches to this form of interoperability are discussed, an implementation of the CMB conservative algorithm, an example of a so-called “light” approach, and an implementation of the HLA TAR algorithm, an example of a so-called “heavy” approach. Results from experimentation over four federation topologies are presented and it is shown the HLA approach out performs the CMB approach in almost all cases. The paper concludes that the CSPE benchmark is a valid basis from which the most efficient approach to Type I interoperability problems for COTS distributed simulation can be discovered

    Integrating heterogeneous distributed COTS discrete-event simulation packages: An emerging standards-based approach

    Get PDF
    This paper reports on the progress made toward the emergence of standards to support the integration of heterogeneous discrete-event simulations (DESs) created in specialist support tools called commercial-off-the-shelf (COTS) discrete-event simulation packages (CSPs). The general standard for heterogeneous integration in this area has been developed from research in distributed simulation and is the IEEE 1516 standard The High Level Architecture (HLA). However, the specific needs of heterogeneous CSP integration require that the HLA is augmented by additional complementary standards. These are the suite of CSP interoperability (CSPI) standards being developed under the Simulation Interoperability Standards Organization (SISO-http://www.sisostds.org) by the CSPI Product Development Group (CSPI-PDG). The suite consists of several interoperability reference models (IRMs) that outline different integration needs of CSPI, interoperability frameworks (IFs) that define the HLA-based solution to each IRM, appropriate data exchange representations to specify the data exchanged in an IF, and benchmarks termed CSP emulators (CSPEs). This paper contributes to the development of the Type I IF that is intended to represent the HLA-based solution to the problem outlined by the Type I IRM (asynchronous entity passing) by developing the entity transfer specification (ETS) data exchange representation. The use of the ETS in an illustrative case study implemented using a prototype CSPE is shown. This case study also allows us to highlight the importance of event granularity and lookahead in the performance and development of the Type I IF, and to discuss possible methods to automate the capture of appropriate values of lookahead

    Bridging the gap: a standards-based approach to OR/MS distributed simulation

    Get PDF
    Pre-print version. Final version published in ACM Transactions on Modeling and Computer Simulation (TOMACS); available online at http://tomacs.acm.org/In Operations Research and Management Science (OR/MS), Discrete Event Simulation (DES) models are typically created using commercial simulation packages such as Simul8™ and SLX™. A DES model represents the processes associated with a system of interest; but, in cases where the underlying system is large and/or logically divided, the system may be conceptualized as several sub-systems. These sub-systems may belong to multiple stakeholders, and creating an all-encompassing DES model may be difficult for reasons such as, concerns among the intra- and inter-organizational stakeholders with regard to data/information sharing (e.g., security and privacy). Furthermore, issues such as model composability, data transfer/access problems and execution speed may also make a single model approach problematic. A potential solution could be to create/reuse well-defined DES models, each modeling the processes associated with one sub-system, and using distributed simulation technique to execute the models as a unified whole. Although this approach holds great promise, there are technical barriers. One such barrier is the lack of common ground between distributed simulation developers and simulation practitioners. In an attempt to bridge this gap, this paper reports on the outcome of an international standardization effort, the SISO-STD-006-2010 Standard for Commercial-Off-The-Shelf Simulation Package Interoperability References Models (IRMs). This facilitates the capture of interoperability requirements at a modeling level rather than a technical level and enables simulation practitioners and vendors to properly specify the interoperability requirements of a distributed simulation in their terms. Two distributed simulation examples are given to illustrate the use of IRMs

    Distributed Approaches to Supply Chain Simulation: A Review

    Get PDF
    This is the author accepted manuscript. The final version is available from ACM via the DOI in this recordThe field of Supply Chain Management (SCM) is experiencing rapid strides in the use of Industry 4.0 technologies and the conceptualization of new supply chain configurations for online retail, sustainable and green supply chains and the Circular Economy. Thus, there is an increasing impetus to use simulation techniques such as discrete-event simulation, agent-based simulation and hybrid simulation in the context of SCM. In conventional supply chain simulation, the underlying constituents of the system like manufacturing, distribution, retail and logistics processes are often modelled and executed as a single model. Unlike this conventional approach, a distributed supply chain simulation (DSCS) enables the coordinated execution of simulation models using specialist software. To understand the current state-of-the-art of DSCS, this paper presents a methodological review and categorization of literature in DSCS using a framework-based approach. Through a study of over 130 articles, we report on the motivation for using DSCS, the modelling techniques, the underlying distributed computing technologies and middleware, its advantages and a future agenda, as also limitations and trade-offs that may be associated with this approach. The increasing adoption of technologies like Internet-of-Things and Cloud Computing will ensure the availability of both data and models for distributed decision-making, and which is likely to enable data-driven DSCS of the future. This review aims to inform organizational stakeholders, simulation researchers and practitioners, distributed systems developers and software vendors, as to the current state of the art of DSCS, and which will inform the development of future DSCS using new applied computing approaches

    Investigating grid computing technologies for use with commercial simulation packages

    Get PDF
    As simulation experimentation in industry become more computationally demanding, grid computing can be seen as a promising technology that has the potential to bind together the computational resources needed to quickly execute such simulations. To investigate how this might be possible, this paper reviews the grid technologies that can be used together with commercial-off-the-shelf simulation packages (CSPs) used in industry. The paper identifies two specific forms of grid computing (Public Resource Computing and Enterprise-wide Desktop Grid Computing) and the middleware associated with them (BOINC and Condor) as being suitable for grid-enabling existing CSPs. It further proposes three different CSP-grid integration approaches and identifies one of them to be the most appropriate. It is hoped that this research will encourage simulation practitioners to consider grid computing as a technologically viable means of executing CSP-based experiments faster

    A grid computing framework for commercial simulation packages

    Get PDF
    An increased need for collaborative research among different organizations, together with continuing advances in communication technology and computer hardware, has facilitated the development of distributed systems that can provide users non-trivial access to geographically dispersed computing resources (processors, storage, applications, data, instruments, etc.) that are administered in multiple computer domains. The term grid computing or grids is popularly used to refer to such distributed systems. A broader definition of grid computing includes the use of computing resources within an organization for running organization-specific applications. This research is in the context of using grid computing within an enterprise to maximize the use of available hardware and software resources for processing enterprise applications. Large scale scientific simulations have traditionally been the primary benefactor of grid computing. The application of this technology to simulation in industry has, however, been negligible. This research investigates how grid technology can be effectively exploited by simulation practitioners using Windows-based commercially available simulation packages to model simulations in industry. These packages are commonly referred to as Commercial Off-The-Shelf (COTS) Simulation Packages (CSPs). The study identifies several higher level grid services that could be potentially used to support the practise of simulation in industry. It proposes a grid computing framework to investigate these services in the context of CSP-based simulations. This framework is called the CSP-Grid Computing (CSP-GC) Framework. Each identified higher level grid service in this framework is referred to as a CSP-specific service. A total of six case studies are presented to experimentally evaluate how grid computing technologies can be used together with unmodified simulation packages to support some of the CSP-specific services. The contribution of this thesis is the CSP-GC framework that identifies how simulation practise in industry may benefit from the use of grid technology. A further contribution is the recognition of specific grid computing software (grid middleware) that can possibly be used together with existing CSPs to provide grid support. With its focus on end-users and end-user tools, it is intended that this research will encourage wider adoption of grid computing in the workplace and that simulation users will derive benefit from using this technology.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore