65 research outputs found

    Optimising energetic particle transport in 3D fields in the ITER tokamak

    Get PDF
    The high-gain ITER baseline tokamak plasma scenario depends upon reliable H-mode operation with edge-localised modes (ELM) suppressed by the application of resonant magnetic perturbations (RMP) using an ELM-control coil (ECC) system. However, these perturbations can lead to significant fast-ion transport and resulting power loads on plasma-facing components (PFC). This is of particular concern to the high-power discharges in ITER, which are extremely challenging to predictively study using conventional experimental devices and the physics codes currently used to study them. In this work, software was created with which novel, high-performance computing components were assembled to enable, for the first time, routine, high-fidelity simulation of realistic fast-ion transport due to 3D fields in ITER. The primary fast-ion component, LOCUST, was verified and validated. The assembled workflow was then deployed to determine methods of operating the ITER ECC system where plasma heating efficiency, PFC power loads and ELM suppression are optimised simultaneously. The response of fast-ion confinement to ECC operating parameters, such as coil current amplitude and phase, was discovered to correlate with ELM suppression. With this knowledge, the optimal method for operating the ECC system was determined, over a range of plasmas and applied RMP mode spectra, to increase total heating efficiency by 1.7-3.2% points in the baseline scenario. Even in the worst case, PFC power loads were found to be tolerable and rotation of the applied RMP to reduce power loads by up to 0.44MWm^-2 (64%). In the optimal setting however, rotation may not be required, as minimum power loads and global losses were found to correlate. Methods for experimentally verifying these findings, using low-power plasmas and the diagnostic neutral beam, were also studied. Lowering the ECC coil current was found to be a low-risk approach to predicting fast-ion confinement in the ITER baseline scenario

    Analysis and synthesis techniques of nonlinear dynamical systems with applications to diagnostic of controlled thermonuclear fusion reactors

    Get PDF
    Nonlinear dynamical systems are of wide interest to engineers, physicists and mathematicians, and this is due to the fact that most of physical systems in nature are inherently non-linear. The nonlinearity of these systems has consequences on their time-evolution, which in some cases can be completely unpredictable, apparently random, although fundamentally deterministic. Chaotic systems are striking examples of this. In most cases, there are no hard and fast rules to analyse these systems. Often, their solutions cannot be obtained in closed form, and it is necessary to resort to numerical integration techniques, which, in case of high sensitivity to initial conditions, lead to ill-conditioning problems and high computational costs. The dynamical system theory, the branch of mathematics used to describe the behaviour of these systems, focuses not on finding exact solutions to the equations describing the dynamical system, but rather on knowing if the system stabilises to a steady state in the long term, and what are the possible attractors, e.g. a quasi-periodic or chaotic attractors. Regarding the synthesis, from both a practical and a theoretical standpoint, it is very desirable to develop methods of synthesizing these systems. Although extensive theory has been developed for linear systems, no complete formulation for nonlinear systems synthesis is present today. The main topic of this thesis is the solution of engineering problems related to the analysis and synthesis of nonlinear and chaotic systems. In particular, a new algorithm which optimizes Lyapunov exponents estimation in piecewise linear systems has been applied to PWL and polynomial chaotic systems. In the field of complex systems synthesis, a systematic method to project systems of order 2n characterized by two positive Lyapunov exponents, has been proposed. This procedure couples nth-order chaotic systems with a suitable nonlinear coupling function. Furthermore, a method for the fault detection has been developed. In the field of time series analysis, a new denoising method, based on the wavelet transform of the noisy signal, has been described. The method implements a variable thresholding, whose optimal value is determined by analysing the cross-correlation between the denoised signal and the residuals and by applying different criteria depending on the particular decomposition level. Finally, a study of dynamical behaviour of Type I ELMs has been performed for a future modelization of the phenomenon. In this context, a statistical analysis of time intervals between successive Type I ELMs has been proposed.---------------------------------- Il tema principale di questa tesi è la soluzione di problemi ingegneristici legati all’analisi e alla sintesi di sistemi dinamici non lineari. I sistemi dinamici non lineari sono di largo interesse per ingegneri, fisici e matematici, e questo è dovuto al fatto che la maggior parte dei sistemi fisici in natura è intrinsecamente non lineare. La non linearità di questi sistemi ha conseguenze sulla loro evoluzione temporale, che in certi casi può rivelarsi del tutto imprevedibile, apparentemente casuale, seppure fondamentalmente deterministica. I sistemi caotici sono un esempio lampante di questo comportamento. Nella maggior parte dei casi non esistono delle regole standard per l’analisi di questi sistemi. Spesso, le soluzioni non possono essere ottenute in forma chiusa, ed è necessario ricorrere a tecniche di integrazione numerica, che, in caso di elevata sensibilità alle condizioni iniziali, portano a problemi di mal condizionamento e di elevato costo computazionale. La teoria dei sistemi dinamici, la branca della matematica usata per descrivere il comportamento di questi sistemi, non si concentra sulla ricerca di soluzioni esatte per le equazioni che descrivono il sistema dinamico, ma piuttosto sull’analisi del comportamento a lungo termine del sistema, per sapere se questo si stabilizzi in uno stato stabile e per sapere quali siano i possibili attrattori, ad esempio, attrattori quasi-periodici o caotici. Per quanto riguarda la sintesi, sia da un punto di vista pratico che teorico, è molto importante lo sviluppo di metodi in grado di sintetizzare questi sistemi. Sebbene per i sistemi lineari sia stata sviluppata una teoria ampia e esaustiva, al momento non esiste alcuna formulazione completa per la sintesi di sistemi non lineari. In questa tesi saranno affrontati problemi di caratterizzazione, analisi e sintesi, legati allo studio di sistemi non lineari e caotici. La caratterizzazione dinamica di un sistema non lineare permette di individuarne il comportamento qualitativo a lungo termine. Gli esponenti di Lyapunov sono degli strumenti che permettono di determinare il comportamento asintotico di un sistema dinamico. Essi danno informazioni circa il tasso di divergenza di traiettorie vicine, caratteristica chiave delle dinamiche caotiche. Le tecniche esistenti per il calcolo degli esponenti di Lyapunov sono computazionalmente costose, e questo fatto ha in qualche modo precluso l’uso estensivo di questi strumenti in problemi di grandi dimensioni. Inoltre, durante il calcolo degli esponenti sorgono dei problemi di tipo numerico, per ciò il calcolo deve essere affrontato con cautela. L’implementazione di algoritmi veloci e accurati per il calcolo degli esponenti di Lyapunov è un problema di interesse attuale. In molti casi pratici il vettore di stato del sistema non è disponibile, e una serie temporale rappresenta l’unica informazione a disposizione. L’analisi di serie storiche è un metodo di analisi dei dati provenienti da serie temporali che ha lo scopo di estrarre delle statistiche significative e altre caratteristiche dei dati, e di ottenere una comprensione della struttura e dei fattori fondamentali che hanno prodotto i dati osservati. Per esempio, un problema dei reattori a fusione termonucleare controllata è l’analisi di serie storiche della radiazione Dα, caratteristica del fenomeno chiamato Edge Localized Modes (ELMs). La comprensione e il 16 controllo degli ELMs sono problemi cruciali per il funzionamento di ITER, in cui il type-I ELMy H-mode è stato scelto come scenario di funzionamento standard. Determinare se la dinamica degli ELM sia caotica o casuale è cruciale per la corretta descrizione dell’ELM cycle. La caratterizzazione dinamica effettuata sulle serie temporali ricorrendo al cosiddetto spazio di embedding, può essere utilizzata per distinguere serie random da serie caotiche. Uno dei problemi più frequenti che si incontra nell’analisi di serie storiche sperimentali è la presenza di rumore, che in alcuni casi può raggiungere anche il 10% o il 20% del segnale. È quindi essenziale , prima di ogni analisi, sviluppare una tecnica appropriata e robusta per il denosing. Quando il modello del sistema è noto, l’analisi di serie storiche può essere applicata al rilevamento di guasti. Questo problema può essere formalizzato come un problema di identificazione dei parametri. In questi casi, la teorie dell’algebra differenziale fornisce utili informazioni circa la natura dei rapporti fra l’osservabile scalare, le variabili di stato e gli altri parametri del sistema. La sintesi di sistemi caotici è un problema fondamentale e interessante. Questi sistemi non implicano soltanto un metodo di realizzazione di modelli matematici esistenti ma anche di importanti sistemi fisici reali. La maggior parte dei metodi presentati in letteratura dimostra numericamente la presenza di dinamiche caotiche, per mezzo del calcolo degli esponenti di Lyapunov. In particolare, le dinamiche ipercaotiche sono identificate dalla presenza di due esponenti di Lyapunov positivi

    2022 Review of Data-Driven Plasma Science

    Get PDF
    Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required

    Energy: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 1169 reports, articles, and other documents introduced into the NASA scientific and technical information system from January 1, 1983 through March 31, 1983

    Full-wave modeling of lower hybrid waves on Alcator C-Mod

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 225-237).This thesis focuses on several aspects of the Lower Hybrid (LH) wave physics, the common theme being the development of full-wave simulation codes based on Finite Element Methods (FEM) used in support of experiments carried out on the Alcator C-Mod tokamak. In particular, two non-linear problems have been adressed: high power antenna-plasma coupling and current drive (CD). In both cases, direct solution of the wave equation allowed testing the validity of approximations which were historically done and consider full-wave effects and realistic geometries. The first code, named POND, takes into account the interaction of high power LH waves and the plasma edge based on the non-linear ponderomotive force theory. Simulations found the effect of ponderomotive forces to be compatible with the density depletion which is measured in front of the antenna in presence of high power LH waves. The second code, named LHEAF, solves the problem of LH wave propagation in a hot non- Maxwellian plasma. The electron Landau damping (ELD) effect was expressed as a convolution integral along the magnetic field lines and the resultant integro-differential Helmholtz equation was solved iteratively. A 3D Fokker-Planck code and a synthetic Hard X-Ray (HXR) diagnostic modules are used to calculate the self-consistent electron distribution function and evaluate the resulting CD and bremsstrahlung radiation. LHEAF has been used to investigate the anomalous degradation of LHCD efficiency at high density. Results show that while a small fraction of the launched power can be absorbed in the SOL by collisions, it is a strong upshift in the nii spectrum that makes the overall LHCD efficiency low by allowing the waves to Landau damp near the edge. Wavelet analysis of the full-wave fields identified spectral broadening to occur after the waves reflect and propagate in the SOL. This work explains why on Alcator C-Mod the eikonal approximation is valid only in the low to moderate density regime, and why parasitic phenomena introduced in previous work can reproduce phenomenologically well the experimental results.by Orso Meneghini.Ph.D

    Investigations of the MAST SOL using the reciprocating probe system

    No full text
    Parallel flow in the scrape-off layer is a major area of interest in tokamak research, impacting on impurity transport, tritium retention and H-mode access. The work presented here is the first major investigation of SOL flow in the Mega Ampere Spherical Tokamak (MAST), using a Gundestrup probe specifically designed for the task. The results of a parameter scan in poloidal field, Bѳ, and temperature, T, of parallel velocity at the outboard mid-plane are presented, and the results and scalings compared to B2SOLPS5.0 simulations of MAST and a simple analytical model, in order to identify the relative importance of drift mechanisms (such as Pfirsch-Schluter and E × B) for driving parallel flow. The results show the predicted linear scaling with temperature and poloidal field strength, but also suggest a density dependence. Another major are of interest is the discovery in recent years of coherent filamentary structures that are radially convected through the L-mode SOL. These filaments are believed to contain sharp gradients in temperature, density and plasma potential, complicating probe analysis. An investigation to characterise the intermittency of the MAST SOL, it’s dependencies on poloidal field strength, density or temperature, and the impact of the filaments on probe measurements was also carried out, and a probe was built to further investigate the structure and dynamics of the filaments. Based on these experiments a method for resolving the flow in the filaments and background plasma was developed and applied in the flow experiments described above. It is found that the parallel Mach numbers are lower in the filaments than the ambient plasma in the far SOL — suggesting either ion temperatures are at least on the order of 4 times the electron temperature — or parallel flow velocity is substantially lower in the filaments than in the background plasma

    Bayesiaanse geïntegreerde bepaling van de effectieve ionaire lading via remstralings- en ladingsuitwisselingsspectroscopie in tokamakplasma's

    Get PDF
    Dit doctoraatswerk is gekaderd in de ontwikkeling van gecontroleerde thermonucleaire fusie als een schone, veilige en nagenoeg onuitputtelijke energiebron. Het is geconcentreerd op magnetische opsluiting in de tokamakconfiguratie. In een eerste, experimenteel gedeelte werd een nieuwe diagnostiek ontwikkeld voor remstralingsspectroscopie in het zichtbare aan de TEXTOR-tokamak (Institut fuer Plasmaphysik, Forschungszentrum Juelich, Duitsland). De diagnostiek voorziet 24 zichtlijnen gekoppeld aan een gekoelde CCD-camera, waardoor de voordelen van zowel een relatief hoge tijdsresolutie als ruimtelijke resolutie worden gecombineerd. Emissiviteitsprofielen van remstraling kunnen gereconstrueerd worden door een Abel-inversie. De betrouwbaarheid van de gereconstrueerde profielen werd vergroot door Tikhonov- en Maximum Entropie-regularisatie. Op die manier kunnen samen met profielen van de elektrondichtheid en de elektrontemperatuur, profielen voor de effectieve ionaire lading Zeff afgeleid worden. Een nieuwe methode voor de relatieve calibratie van het systeem werd bedacht en getest, gebaseerd op de consistentievereiste van profielen onder een verandering van zichtgeometrie. In een tweede deel van het doctoraatswerk werd Bayesiaanse waarschijnlijkheidsrekening gebruikt met het oog op de oplossing van het aloude probleem van de incompatibiliteit van Zeff-schattingen afgeleid uit remstralingsspectroscopie enerzijds en uit de gewogen sommatie van individuele onzuiverheidsconcentraties verkregen door ladingsuitwisselingsspectroscopie (CXS) anderzijds. Een probabilistisch model werd opgezet dat metingen van zowel remstralingsspectroscopie als CXS integreert. Inherente statistische en systematische onzekerheden in de metingen werden op een behoorlijke manier in rekening gebracht. Hierdoor werd het mogelijk een meest waarschijnlijke waarde voor Zeff op de magnetische as af te leiden, die consistent is met beide sets metingen en met kleinere foutenmarges dan voordien. Het uiteindelijke doel is de betrouwbaarheid en robuustheid van Zeff-profielen te verbeteren over de volledige plasmadoorsnede, terwijl consistentheid met alle beschikbare ruwe metingen behouden blijft. Een gelijkaardige Bayesiaanse analyse kan toegepast worden op vele (sets van) fusiediagnostieken en dit heeft een aanzienlijk potentieel om in het fusieonderzoek de algemene consistentie en nauwkeurigheid van data te verbeteren

    Energy: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 1096 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System from April 1, 1979 through June 30, 1979

    Pattern recognition in spaces of probability distributions for the analysis of edge-localized modes in tokamak plasmas

    Get PDF
    Magnetically confined fusion plasmas provide several data analysis challenges due to the occurrence of massive data sets, substantial measurement uncertainty, stochasticity and data dimensionality, and often nonlinear interactions between measured quantities. Recently, methods from the fields of machine learning and probability theory - some standard, some more advanced - have come to play an increasingly important role in analyzing data from fusion experiments. The capabilities offered by such methods to efficiently extract, possibly in real time, additional information from the data that is not immediately apparent to human experts, has attracted attention from an increasing number of researchers. In addition, innovative methods for real-time data processing can play an important role in plasma control, in order to ensure safe and reliable operation of the machine. Pattern recognition is a discipline within the information sciences that concerns the exploration of structure in (multidimensional) data sets using computer-based methods and algorithms. In this doctoral work, pattern recognition techniques are developed and applied to data from tokamak plasmas, in order to contribute to a systematic analysis of edge-localized modes (ELMs). ELMs are magnetohydrodynamic (MHD) instabilities occurring in the edge region of high-confinement (H-mode) fusion plasmas. The type I ELMy H-mode is the reference scenario for operation of the next-step fusion device ITER. On the one hand, ELMs have a beneficial effect on plasma operation through their role in impurity control. On the other hand, ELMs eject energy and particles from the plasma and, in ITER, large unmitigated ELMs are expected to cause intolerable heat loads on the plasma-facing components (PFCs). In interpreting experiments focused on ELM understanding and control, a significant challenge lies in handling the measurement uncertainties and the inherent stochasticity of ELM properties. In this work, we employ probabilistic models (distributions) for a quantitative data description geared towards an enhanced systematization of ELM phenomenology. Hence, we start from the point of view that the fundamental object resulting from the observation of a system is a probability distribution, with every single measurement providing a sample from this distribution. We argue that, particularly for richly stochastic phenomena like ELMs, the probability distribution of physical quantities contain significantly more information compared to mere averages. Consequently, in exploring the patterns emerging from the various ELM regimes and relations, we need methods that can handle the intrinsic probabilistic nature of the data. The original contributions of this work are twofold. First, several novel pattern recognition methods in non-Euclidean spaces of probability distribution functions (PDFs) are developed and validated. The second main contribution lies in the application of these and other techniques to a systematic analysis of ELMs in tokamak plasmas. In regard to the methodological aims of the work, we employ the framework of information geometry to develop pattern visualization and classification methods in spaces of probability distributions. In information geometry, a family of probability distributions is considered as a Riemannian manifold. Every point on the manifold represents a single PDF and the distribution parameters provide local coordinates on the manifold. The Fisher information plays the role of a Riemannian metric tensor, enabling calculation of geodesic curves on the surface. The length of such curves yields the geodesic distance (GD) on probabilistic manifolds, which is a natural similarity (distance) measure between PDFs. Equipped with a suitable distance measure, we extrapolate several distance-based pattern recognition methods to the manifold setting. This includes k-nearest neighbor (kNN) and conformal predictor (CP) methods for classification, as well as multidimensional scaling (MDS) and landmark multidimensional scaling (LMDS) for data visualization (dimensionality reduction). Furthermore, two new classification schemes are developed: a distance-to-centroid classifier (D2C) and a principal geodesic classifier (PGC). D2C classifies on the basis of the minimum GD to the class centroids and PGC considers the shape of the class on the manifold by determining the minimum distance to the principal geodesic of each class. The methods are validated by their application to the classification and retrieval of colored texture images represented in the wavelet domain. Both methods prove to be computationally efficient, yield high accuracy and also clearly exhibit the adequacy of the GD and its superiority over the Euclidean distance, for comparing PDFs. This also aids in demonstrating the utility and adaptability of the developed methods to a wide range of applications other than ELMs, which are the prime focus of analysis in this work. The second main goal of the work targets ELM analysis at three fronts, using pattern recognition and probabilistic modeling : i). We first concentrate on visualization of ELM characteristics by creating maps containing projections of multidimensional ELM data, as well as the corresponding probabilistic models. Such maps can provide physicists and machine operators with a convenient means and a useful tool for plasma monitoring and for studying data patterns reflecting key regimes and their underlying physics. In particular, GD-based MDS is used for representing the complete distributions of the multidimensional data characterizing the operational space of ELMs onto two-dimensional maps. Clusters corresponding to type I and type III ELMs are identified and the maps enable tracking of trends in plasma parameters across the operational space. It is shown that the maps can also be used with reasonable accuracy for predicting the values of the plasma parameters at a certain point in the operational space. ii). Our second application concerns fast, standardized and automated classification of ELM types. ELM types have so far been identified and characterized on an empirical and phenomenological basis. The presented classification schemes are aimed at complementing the phenomenological characterization using standardized methods that are less susceptible to subjective interpretation, while considerably reducing the effort of ELM experts in identifying ELM types. To this end, different classification paradigms (parametric and non-parametric) are explored and put to use. Discriminant analysis (DA) is used for determining a linear separation boundary between type I and III ELMs in terms of global plasma parameters, which can then be used for the prediction of ELM types as well as the study of ELM occurrence boundaries and ELM physics. However, DA makes an assumption about the underlying class distribution and presently cannot be applied in spaces of probability distributions, leading to a sub-optimal treatment of stochasticity. This is circumvented by the use of GD-based CP and kNN classifiers. CP provides estimates of its own accuracy and reliability and kNN is a simple, yet powerful classifier of ELM types. It is shown that a classification based on the distribution of ELM properties, namely inter-ELM time intervals and the distribution of global plasma parameters, is more informative and accurate than the classification based on average parameter values. iii). Finally, the correlation} between ELM energy loss (ELM size) and ELM waiting times (inverse ELM frequency) is studied for individual ELMs in a set of plasmas from the JET tokamak upgraded with the ITER-like wall (ILW). Typically, ELM control methods rely on the empirically observed inverse dependence of average ELM energy loss on average ELM frequency, even though ELM control is targeted at reducing the size of individual ELMs and not the average ELM loss. The analysis finds that for individual ELMs the correlation between ELM energy loss and waiting times varies from zero to a moderately positive value. A comparison is made with the results from a set of carbon-wall (CW) JET plasmas and nitrogen-seeded ILW JET plasmas. It is found that a high correlation between ELM energy loss and waiting time comparable to CW plasmas is only found in nitrogen-seeded ILW plasmas. Furthermore, most of the unseeded JET ILW plasmas have ELMs that are followed by a second phase referred to as the slow transport event (STE). The effect of the STEs on the distribution of ELM durations is studied, as well as their influence on the correlation between ELM energy loss and waiting times. This analysis has a clear outcome for the optimization of ELM control methods, while presenting insights for an improved physics understanding of ELMs.Die Analyse von experimentellen Daten magnetisch eingeschlossener Fusionsplasmen stellt wegen der großen Datenmengen, der hohen Dimensionalität, der Messunsicherheiten und auch der oft nichtlinearen Beziehungen untereinander eine große Herausforderung dar. Methoden der Datenanalyse aus den Feldern des maschinellen Lernens sowie der Wahrscheinlichkeitstheorie spielen daher in letzter Zeit eine immer größere Rolle bei der Analyse von Daten aus Fusionsexperimenten. Dabei interessiert vor allem die Möglichkeit, zusätzliche Information welche dem menschlichen Beobachter verborgen bleiben, systematisch zu extrahieren. Zusätzlich können innovative Methoden der Echtzeit-Datenverarbeitung eine wichtige Rolle für Kontrollanwendungen in Fusionsexperimenten spielen. Mustererkennung ist eine Disziplin der Informationstheorie welche sich mit der Erforschung von Strukturen in multidimensionalen Datensätzen durch computergestützte Methoden und Algorithmen beschäftigt. In dieser Doktorarbeit werden Methoden der Mustererkennung auf Daten von Tokamakexperimenten für eine systematische Analyse von edge-localized modes (ELMs) angewendet. ELMs sind magnetohydrodynamische (MHD) Instabilitäten die am Plasmarand in ‘high-confinement‘ (H-mode) Fusionsplasmen auftreten. Die ‘Typ I ELMy H-mode' ist das Referenz-Betriebsszenario für das zukünftige ITER Experiment. ELMs spielen einerseits eine positive Rolle für den Plasmabetrieb da sie zur Verunreinigungskontrolle beitragen. Andererseits werfen ELMs Teilchen und Energie aus dem Plasma und könnten daher in ITER die Integrität der ersten Wand gefährden. Eine signifikante Herausforderung bei der Interpretation von Experimenten welche sich mit dem Verständnis und der Kontrolle von ELMs beschäftigen liegt in der Behandlung der Messunsicherheiten sowie der inhärenten Stochastizität der ELM Parameter. In der vorliegenden Arbeit werden probabilistische Modelle (Verteilungen) zur quantitativen Beschreibung der Daten mit dem Ziel einer verbesserten systematischen Einteilung der ELM-Phänomenologie verwendet. Dabei wird davon ausgegangen, dass die fundamentale Größe eines Systems eine Wahrscheinlichkeitsverteilung ist, wobei jede Einzelmessung eine Stichprobe dieser Verteilung darstellt. Dabei wird angenommen dass, im Besonderen für stark stochastische Ereignisse wie ELMs, die Wahrscheinlichkeitsverteilung der physikalischen Parameter deutlich mehr Information enthält als deren Mittelwerte. Folglich erfordert die Erforschung der Struktur der unterschiedlichen ELM Regimes Methoden, welche die intrinsisch stochastische Natur der Daten berücksichtigen kann. Diese Arbeit liefert zwei grundsätzlich neue Beiträge: zunächst werden neuartige Strukturerkennungs-Methoden in nicht-euklidischen Räumen von Wahrscheinlichkeitsverteilungen entwickelt und validiert. Der zweite grundsätzliche Beitrag liegt in der Anwendung dieser und anderer Methoden auf eine systematische Analyse von ELMs in Tokamakplasmen. Aus methodologischer Sicht wird in dieser Arbeit die Informationsgeometrie angewendet um Methoden zur Mustererkennung und –klassifizierung in Räumen von Wahrscheinlichkeitsverteilungen zu entwickeln. In der Informationsgeometrie wird eine Familie von Wahrscheinlichkeitsverteilungen als eine Riemannsche Mannigfaltigkeit aufgefasst. Jeder Punkt auf der Mannigfaltigkeit stellt eine Wahrscheinlichkeitsverteilung dar und die Verteilungsparameter sind lokale Koordinaten auf der Mannigfaltigkeit. Die Fisher Information spielt dabei die Rolle des Riemannschen metrischen Tensors und erlaubt es, geodätische Kurven auf der Fläche zu berechnen. Die Länge einer solchen Kurve ergibt den geodätischen Abstand auf der Mannigfaltigkeit, welcher ein natürliches Maß für den Abstand zwischen Verteilungsfunktionen ist. Mit diesem geeigneten Abstandsmaß werden mehrere Mustererkennungsmethoden welche auf dem Abstand basieren auf die Mannigfaltigkeit angewandt. Diese schließen die ‘k-nearest neighbor’ (kNN) und ‘conformal predictor’ (CP) Klassifikationsmethoden ein sowie ‘multidimensional scaling’ (MDS) und ‘landmark multidimensional scaling‘ (LMDS) zur Datenvisualisierung mit dem Ziel der Dimensionsreduktion. Desweitern werden zwei neue Klassifikationsmethoden entwickelt: ein ‘distance-to-centroid classifier’ (D2C) und ein ‘principal geodesic classifier’ (PGC). D2C klassifiziert auf Basis des minimalen geodätischen Abstands vom Schwerpunkt der Daten und PGC berücksichtigt die Form der Klasse auf der Mannigfaltigkeit indem der Abstand zur Hauptgeodätischen jeder Klasse bestimmt wird. Diese Methoden werden durch Anwendung auf die Klassifizierung und Rekonstruktion von farbigen Texturbildern in der Waveletdarstellung validiert. Beide Methoden stellen sich als effizient im Rechenaufwand heraus und liefern hohe Genauigkeit, wobei der geodätische Abstand dem euklidischen Abstand deutlich überlegen ist und somit als angemessen für den Vergleich von Verteilungsfunktionen bestätigt wird. Dies dient auch dem Nachweis der Eignung der entwickelten Methoden für eine Vielzahl von Anwendungen über das in dieser Arbeit vorrangig behandelte Feld der ELMs hinaus. Das zweite Hauptziel der Arbeit ist die Analyse von ELMs mit den Methoden der Mustererkennung und der wahrscheinlichkeitstheoretischen Modellierung auf drei Gebieten: i). Zunächst wird die Visualisierung von ELM Eigenschaften durch Erstellung von Abbildungen behandelt welche multidimensionale ELM Daten projizieren. Solche Abbildungen können für Physiker und Experimentatoren ein nützliches Werkzeug zur Überwachung der Plasmaentladung darstellen und dienen darüber hinaus zu Studien von Datenmustern, welche prinzipielle Regimes und deren zugrundeliegende Physik charakterisieren. Im speziellen wird die GD-basierte MDS zur Darstellung der gesamten Verteilung der multidimensionalen Daten, welche das Auftreten von ELMs beschreiben in zweidimensionalen Abbildungen verwendet. Cluster in welchen ‘Typ I’ und ‘Typ III’ ELMs auftreten werden identifiziert und die Abbildung ermöglicht es, Trends in der Veränderung von Plasmaparametern im Parameterraum zu erkennen. Es wird gezeigt, dass diese Abbildungen auch dazu verwendet werden können, die Plasmaparameter für einen bestimmten Punkt im Betriebsbereich vorherzusagen. ii). Eine zweite Anwendung beschäftigt sich mit einer schnellen, standardisierten Klassifizierung des ELM Typs. ELM Typen wurden bisher auf einer empirisch-phänomenologischen Basis identifiziert. Die hier vorgestellten Klassifizierungs-Schemata dienen der Ergänzung der phänomenologischen Beschreibung durch standardisierte Methoden welche weniger anfällig für subjektive Wahrnehmung und Interpretation sind und sollen auch den Aufwand bei der Bestimmung des ELM Typs verringern. Verschiedene Klassifizierungsmethoden, parametrisch und nicht-parametrisch, werden untersucht und eingesetzt. Discriminant Analysis (DA) wird für die Bestimmung einer linearen Grenze zwischen Typ I und Typ III ELMs in globalen Plasmaparametern eingesetzt, die dann sowohl zur Vorhersage des ELM Typs als auch zur Untersuchung der Bereiche, in denen die unterschiedlichen ELM Typen auftreten, verwendet wird. Dabei basiert die DA allerdings auf einer Annahme über die zugrunde liegende Verteilung der Klassen und kann nach derzeitigem Stand nicht auf Räume von Verteilungsfunktionen angewendet werden, was zu einer unzureichenden Behandlung der Stochastizität führt. Dies wird durch die Verwendung von GD-basierter CP und von kNN Klassifikatoren behoben. CP liefert eine Abschätzung ihrer Genauigkeit und Zuverlässigkeit und kNN ist ein einfacher, aber leistungsstarker Klassifikator für ELM-Typen. Es wird gezeigt dass eine Klassifizierung basierend auf der Verteilung der ELM Eigenschaften, namentlich der inter-ELM Zeitintervalle und der Verteilung der globalen Plasmaparameter, mehr Information enthält als eine Klassifizierung welche auf gemittelten Werten basiert. iii).Schließlich wird die Korrelation zwischen ELM Energieverlust (ELM Größe) und ELM Wartezeiten (inverse ELM Frequenz) für individuelle ELMs aus einer Datenbasis von Plasmaentladungen des JET Tokamaks in der ‚ITER-like wall‘ (ILW) Konfiguration untersucht. ELM Kontrollmethoden basieren typischerweise auf dem empirisch beobachteten inversen Zusammenhang zwischen mittlerem ELM-Verlust und mittlerer ELM-Frequenz, obwohl ELM Kontrolle die Reduktion der Größe individueller ELMs zum Ziel hat. Die Analyse zeigt, dass für individuelle ELMs die Korrelation zwischen ELM-Energieverlust und Wartezeit generell niedrig ist. Dieses Ergebnis wird mit einem Datensatz von JET in der ‚carbon-wall‘ (CW) Konfiguration sowie einem Datensatz von Stickstoff-gekühlten ILW JET Plasmen verglichen. Es zeigt sich, dass eine hohe Korrelation zwischen ELM-Energieverlust und Wartezeit, vergleichbar zu CW Plasmen, nur in Stickstoff-gekühlten ILW Plasmen auftritt. Darüber hinaus treten in den meisten JET ILW Plasmen ohne Stickstoffkühlung ELMs auf, welche von einer zweiten Phase, slow transport event (STE) genannt, begleitet werden. Der Effekt der STEs auf die Verteilung der ELM Dauer sowie deren Einfluss auf die Korrelation zwischen ELM-Energieverlust und Wartezeit wird untersucht. Diese Untersuchung hat einerseits eine starke Relevanz für die Optimierung von Methoden zur ELM Kontrolle, andererseits trägt sie zum tieferen Einblick in die den ELMs zugrunde liegende Physik bei
    • …
    corecore