6 research outputs found

    Improved congestion control for packet switched data networks and the Internet

    Get PDF
    Congestion control is one of the fundamental issues in computer networks. Without proper congestion control mechanisms there is the possibility of inefficient utilization of resources, ultimately leading to network collapse. Hence congestion control is an effort to adapt the performance of a network to changes in the traffic load without adversely affecting users perceived utilities. This thesis is a step in the direction of improved network congestion control. Traditionally the Internet has adopted a best effort policy while relying on an end-to-end mechanism. Complex functions are implemented by end users, keeping the core routers of network simple and scalable. This policy also helps in updating the software at the users' end. Thus, currently most of the functionality of the current Internet lie within the end users' protocols, particularly within Transmission Control Protocol (TCP). This strategy has worked fine to date, but networks have evolved and the traffic volume has increased many fold; hence routers need to be involved in controlling traffic, particularly during periods of congestion. Other benefits of using routers to control the flow of traffic would be facilitating the introduction of differentiated services or offering different qualities of service to different users. Any real congestion episode due to demand of greater than available bandwidth, or congestion created on a particular target host by computer viruses, will hamper the smooth execution of the offered network services. Thus, the role of congestion control mechanisms in modern computer networks is very crucial. In order to find effective solutions to congestion control, in this thesis we use feedback control system models of computer networks. The closed loop formed by TCPIIP between the end hosts, through intermediate routers, relies on implicit feedback of congestion information through returning acknowledgements. This feedback information about the congestion state of the network can be in the form of lost packets, changes in round trip time and rate of arrival of acknowledgements. Thus, end hosts can either execute reactive or proactive congestion control mechanisms. The former approach uses duplicate acknowledgements and timeouts as congestion signals, as done in TCP Reno, whereas the latter approach depends on changes in the round trip time, as in TCP Vegas. The protocols employing the second approach are still in their infancy as they cannot co-exist safely with protocols employing the first approach. Whereas TCP Reno and its mutations, such as TCP Sack, are presently widely used in computer networks, including the current Internet. These protocols require packet losses to happen before they can detect congestion, thus inherently leading to wastage of time and network bandwidth. Active Queue Management (AQM) is an alternative approach which provides congestion feedback from routers to end users. It makes a network to behave as a sensitive closed loop feedback control system, with a response time of one round trip time, congestion information being delivered to the end host to reduce data sending rates before actual packets losses happen. From this congestion information, end hosts can reduce their congestion window size, thus pumping fewer packets into a congested network until the congestion period is over and routers stop sending congestion signals. Keeping both approaches in view, we have adopted a two-pronged strategy to address the problem of congestion control. They are to adapt the network at its edges as well as its core routers. We begin by introducing TCPIIP based computer networks and defining the congestion control problem. Next we look at different proactive end-to-end protocols, including TCP Vegas due to its better fairness properties. We address the incompatibility problem between TCP Vegas and TCP Reno by using ECN based on Random Early Detection (RED) algorithm to adjust parameters of TCP Vegas. Further, we develop two alternative algorithms, namely optimal minimum variance and generalized optimal minimum variance, for fair end-to-end protocols. The relationship between (p, 1) proportionally fair algorithm and the generalized algorithm is investigated along with conditions for its stable operation. Noteworthy is a novel treatment of the issue of transient fairness. This represents the work done on congestion control at the edges of network. Next, we focus on router-based congestion control algorithms and start with a survey of previous work done in that direction. We select the RED algorithm for further work due to it being recommended for the implementation of AQM. First we devise a new Hybrid RED algorithm which employs instantaneous queue size along with an exponential weighted moving average queue size for making decisions about packet marking/dropping, and adjusts the average value during periods of low traffic. This algorithm improves the link utilization and packet loss rate as compared to basic RED. We further propose a control theory based Auto-tuning RED algorithm that adapts to changing traffic load. This algorithm can clamp the average queue size to a desired reference value which can be used to estimate queuing delays for Quality of Service purposes. As an alternative approach to router-based congestion control, we investigate Proportional, Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) principles based control algorithms for AQM. New control-theoretic RED and frequency response based PI and PID control algorithms are developed and their performance is compared with that of existing algorithms. Later we transform the RED and PI principle based algorithms into their adaptive versions using the well known square root of p formula. The performance of these load adaptive algorithms is compared with that of the previously developed fixed parameter algorithms. Apart from some recent research, most of the previous efforts on the design of congestion control algorithms have been heuristic. This thesis provides an effective use of control theory principles in the design of congestion control algorithms. We develop fixed-parameter-type feedback congestion control algorithms as well as their adaptive versions. All of the newly proposed algorithms are evaluated by using ns-based simulations. The thesis concludes with a number of research proposals emanating from the work reported

    Reactive traffic control mechanisms for communication networks with self-similar bandwidth demands

    Get PDF
    Communication network architectures are in the process of being redesigned so that many different services are integrated within the same network. Due to this integration, traffic management algorithms need to balance the requirements of the traffic which the algorithms are directly controlling with Quality of Service (QoS) requirements of other classes of traffic which will be encountered in the network. Of particular interest is one class of traffic, termed elastic traffic, that responds to dynamic feedback from the network regarding the amount of available resources within the network. Examples of this type of traffic include the Available Bit Rate (ABR) service in Asynchronous Transfer Mode (ATM) networks and connections using Transmission Control Protocol (TCP) in the Internet. Both examples aim to utilise available bandwidth within a network. Reactive traffic management, like that which occurs in the ABR service and TCP, depends explicitly on the dynamic bandwidth requirements of other traffic which is currently using the network. In particular, there is significant evidence that a wide range of network traffic, including Ethernet, World Wide Web, Varible Bit Rate video and signalling traffic, is self-similar. The term self-similar refers to the particular characteristic of network traffic to remain bursty over a wide range of time scales. A closely associated characteristic of self-similar traffic is its long-range dependence (LRD), which refers to the significant correlations that occur with the traffic. By utilising these correlations, greater predictability of network traffic can be achieved, and hence the performance of reactive traffic management algorithms can be enhanced. A predictive rate control algorithm, called PERC (Predictive Explicit Rate Control), is proposed in this thesis which is targeted to the ABR service in ATM networks. By incorporating the LRD stochastic structure of background traffic, measurements of the bandwidth requirements of background traffic, and the delay associated with a particular ABR connection, a predictive algorithm is defined which provides explicit rate information that is conveyed to ABR sources. An enhancement to PERC is also described. This algorithm, called PERC+, uses previous control information to correct prediction errors that occur for connections with larger round-trip delay. These algorithms have been extensively analysed with regards to their network performance, and simulation results show that queue lengths and cell loss rates are significantly reduced when these algorithms are deployed. An adaptive version of PERC has also been developed using real-time parameter estimates of self-similar traffic. This has excellent performance compared with standard ABR rate control algorithms such as ERICA. Since PERC and its enhancement PERC+ have explicitly utilised the index of self-similarity, known as the Hurst parameter, the sensitivity of these algorithms to this parameter can be determined analytically. Research work described in this thesis shows that the algorithms have an asymmetric sensitivity to the Hurst parameter, with significant sensitivity in the region where the parameter is underestimated as being close to 0.5. Simulation results reveal the same bias in the performance of the algorithm with regards to the Hurst parameter. In contrast, PERC is insensitive to estimates of the mean, using the sample mean estimator, and estimates of the traffic variance, which is due to the algorithm primarily utilising the correlation structure of the traffic to predict future bandwidth requirements. Sensitivity analysis falls into the area of investigative research, but it naturally leads to the area of robust control, where algorithms are designed so that uncertainty in traffic parameter estimation or modelling can be accommodated. An alternative robust design approach, to the standard maximum entropy approach, is proposed in this thesis that uses the maximum likelihood function to develop the predictive rate controller. The likelihood function defines the proximity of a specific traffic model to the traffic data, and hence gives a measure of the performance of a chosen model. Maximising the likelihood function leads to optimising robust performance, and it is shown, through simulations, that the system performance is close to the optimal performance as compared with maximising the spectral entropy. There is still debate regarding the influence of LRD on network performance. This thesis also considers the question of the influence of LRD on traffic predictability, and demonstrates that predictive rate control algorithms that only use short-term correlations have close performance to algorithms that utilise long-term correlations. It is noted that predictors based on LRD still out-perform ones which use short-term correlations, but that there is Potential simplification in the design of predictors, since traffic predictability can be achieved using short-term correlations. This thesis forms a substantial contribution to the understanding of control in the case where self-similar processes form part of the overall system. Rather than doggedly pursuing self-similar control, a broader view has been taken where the performance of algorithms have been considered from a number of perspectives. A number of different research avenues lead on from this work, and these are outlined

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore