721 research outputs found

    Adaptive and Iterative Multi-Branch MMSE Decision Feedback Detection Algorithms for MIMO Systems

    Full text link
    In this work, decision feedback (DF) detection algorithms based on multiple processing branches for multi-input multi-output (MIMO) spatial multiplexing systems are proposed. The proposed detector employs multiple cancellation branches with receive filters that are obtained from a common matrix inverse and achieves a performance close to the maximum likelihood detector (MLD). Constrained minimum mean-squared error (MMSE) receive filters designed with constraints on the shape and magnitude of the feedback filters for the multi-branch MMSE DF (MB-MMSE-DF) receivers are presented. An adaptive implementation of the proposed MB-MMSE-DF detector is developed along with a recursive least squares-type algorithm for estimating the parameters of the receive filters when the channel is time-varying. A soft-output version of the MB-MMSE-DF detector is also proposed as a component of an iterative detection and decoding receiver structure. A computational complexity analysis shows that the MB-MMSE-DF detector does not require a significant additional complexity over the conventional MMSE-DF detector, whereas a diversity analysis discusses the diversity order achieved by the MB-MMSE-DF detector. Simulation results show that the MB-MMSE-DF detector achieves a performance superior to existing suboptimal detectors and close to the MLD, while requiring significantly lower complexity.Comment: 10 figures, 3 tables; IEEE Transactions on Wireless Communications, 201

    Multiuser Detection with Decision-Feedback Detectors and PIC in MC-CDMA System

    Get PDF
    In this paper we propose an iterative parallel decision feedback (P-DF) receivers associated with parallel interference cancellation (PIC) for multicarrier code division multiple access (MC-CDMA) systems in a Rayleigh fading channel (cost 207). First the most widely detection techniques, minimum mean-squared error MMSE, Maximum Likelihood ML and PIC were investigated in order to compare their performances in terms of Bit Error Rate (BER) with parallel feedback detection P-DFD. A MMSE DF detector that employs parallel decision-feedback (MMSE-P-DFD) is considered and shows almost the same BER performance with MMSE and ML, which present a better result than the other techniques. In a second time, an iterative proposed method based on the multi-stage techniques P-DFD (parallel DFD with two stages) and PIC was exploited to improve the performance of the system

    Turbo receivers for interleave-division multiple-access systems

    Get PDF
    In this paper several turbo receivers for Interleave-Division Multiple-Access (IDMA) systems will be discussed. The multiple access system model is presented first. The optimal, Maximum A Posteriori (MAP) algorithm, is then presented. It will be shown that the use of a precoding technique at the emitter side is applicable to IDMA systems. Several low complexity Multi-User Detector (MUD), based on the Gaussian approximation, will be next discussed. It will be shown that the MUD with Probabilistic Data Association (PDA) algorithm provides faster convergence of the turbo receiver. The discussed turbo receivers will be evaluated by means of Bit Error Rate (BER) simulations and EXtrinsic Information Transfer (EXIT) charts

    Network lifetime extension, power conservation and interference suppression for next generation mobile wireless networks

    Get PDF
    Two major focus research areas related to the design of the next generation multihop wireless networks are network lifetime extension and interference suppression. In this dissertation, these two issues are addressed. In the area of interference suppression, a new family of projection multiuser detectors, based on a generalized, two-stage design is proposed. Projection multiuser detectors provide efficient protection against undesired interference of unknown power, while preserving simple design, with closed-form solution for error probabilities. It is shown that these detectors are linearly optimal, if the interference power is unknown. In the area of network lifetime extension, a new approach to minimum energy routing for multihop wireless networks in Rayleigh fading channels is proposed. It is based on the concept of power combining, whereby two users transmit same signal to the destination user, emulating transmit diversity with two transmit antennas. Analytical framework for the evaluation of the benefits of power combining, in terms of the total transmit power reduction, is defined. Simulation results, which match closely the analytical results, indicate that significant improvements, in terms of transmit power reduction and network lifetime extension, are achievable. The messaging load, generated by the new scheme, is moderate, and can be further optimized

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Doubly Orthogonal Wavelet Packets for Multi-Users Indoor Visible Light Communication Systems

    Get PDF
    Visible Light Communication (VLC) is a data communication technology that modulates the intensity of the light to transmit the information mostly by means of Light Emitting Diodes (LEDs). The data rate is mainly throttled by the limited bandwidth of the LEDs. To combat, Multi-carrier Code Division Multiple Access (MC-CDMA) is a favorable technique for achieving higher data rates along with reduced Inter-Symbol Interference (ISI) and easy access to multi-users at the cost of slightly reduced compromised spectral efficiency and Multiple Access Interference (MAI). In this article, a multi-user VLC system is designed using a Discrete Wavelet Transform (DWT) that eradicates the use of cyclic prefix due to the good orthogonality and time-frequency localization properties of wavelets. Moreover, the design also comprises suitable signature codes, which are generated by employing double orthogonality depending upon Walsh codes and Wavelet Packets. The proposed multi-user system is simulated in MATLAB software and its overall performance is assessed using line-of-sight (LoS) and non-line-of-sight (NLoS) configurations. Furthermore, two sub-optimum multi-users detection schemes such as zero forcing (ZF) and minimum-mean-square-error (MMSE) are also used at the receiver. The simulated results illustrate that the doubly orthogonal signature waveform-based DWT-MC-CDMA with MMSE detection scheme outperforms the Walsh code-based multi-user system

    Multi-user detection for multi-rate DS/CDMA systems

    Get PDF
    Wireless cellular communication is witnessing a rapid growth in market, technology and range of services. Current and future demands for wireless communication services motivate the need for handling multi-media traffic types. In a multimedia communication system, users with different and even time-varying rates and quality of services (QoS) requirements, such as voice, image and data, must be accommodated. The use of Spread Spectrum modulation with Code Division Multiple Access (CDMA) technology is an attractive approach for economical spectrally efficient and high quality cellular and personal communication services. This dissertation explores the technologies of applying different interference cancellation techniques to multi-rate CDMA systems that serve users with different QoS. Multiple Access Interference (MAI) and multipath propagation are the major issues in wireless communication systems. It is also true for multi-rate CDMA systems. Multi-user detection has been shown to be effective in combating the near-far problem and providing superior performance over conventional detection method. In this dissertation, we combine both linear minimum mean squared error (LMMSE) detector, nonlinear decision feedback detector, with other signal processing techniques, such as array processing and multipath combining, to create effective near-far resistant detectors for multi-rate CDMA systems. Firstly, we propose MMSE receivers for synchronous multi-rate CDMA system and compare the performance with the corresponding multi-rate decorrelating detectors. The multi-rate decorrelating detector is optimally near-far resistant and easy to implement. The proposed linear MMSE multi-rate receiver can be adaptively implemented only with the knowledge of the desired user. Due to the fact that MMSE detector offers best trade-off between the MAI cancellation and noise variance enhancement, it is shown that multi-rate MMSE receiver can offer better performance than the multi-rate decorrelator when the interfering users\u27 Signal to Noise Ratio (SNR) is relatively low comparing to the desired user\u27s SNR. Secondly, the asynchronous multi-rate CDMA system, we propose multi-rate multi-shoot decorrelating detectors and multi-rate multi-shot MMSE detectors. The performance of multi-shot detectors can be improved monotonically with increasing the number of stacked bits, but a great computational complexity is going to be introduced in order to get better performance. A debiasing method is introduced to multi-rate multi-shot linear detectors. Debiasing method optimizes multi-rate detectors based on the multi-rate multi-shot model. Debiasing multi-shot MMSE detector for multi-rate signals can offer performance than the corresponding debiasing multi-shot decorrelating detector. Thirdly, we propose linear space-time receivers for multi-rate CDMA systems. The minimum mean-squared error criteria is used. We perform a comparative study on the multi-rate receiver which uses either multipath (temporal) processing or array (spatial) processing, and the one which uses both array and multipath (space-time) processing. The space-time receiver for the multi-rate CDMA signals give us the potential of improving the capacity of multi-rate systems. The space-time processing combined with multiuser detection have the advantages of combating multipath fading through temporal processing, reducing MAI through MMSE method and provide antenna or diversity gain through spatial processing and increasing the capacity of the multi-rate CDMA systems. Lastly, the group-wise interference cancellation methods are proposed for multi-rate CDMA signals. The non-linear decision feedback detection (DFD) schemes are used in the proposed receivers. The proposed interference cancellation schemes benefit from the nature of the unequal received amplitudes for multi-rate CDMA signals. Users with same data rate are grouped together. Users with the highest data-rate are detected first. Interference between the groups is cancelled in a successive order. The results show that the group-wise MMSE DFD yields better performance than multi-rate linear MMSE detector and multi-rate decorrelating detector, especially for highly loaded CDMA systems
    corecore