2,174 research outputs found

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio

    Artificial Intelligence Empowered UAVs Data Offloading in Mobile Edge Computing

    Get PDF
    The advances introduced by Unmanned Aerial Vehicles (UAVs) are manifold and have paved the path for the full integration of UAVs, as intelligent objects, into the Internet of Things (IoT). This paper brings artificial intelligence into the UAVs data offloading process in a multi-server Mobile Edge Computing (MEC) environment, by adopting principles and concepts from game theory and reinforcement learning. Initially, the autonomous MEC server selection for partial data offloading is performed by the UAVs, based on the theory of the stochastic learning automata. A non-cooperative game among the UAVs is then formulated to determine the UAVs\u27 data to be offloaded to the selected MEC servers, while the existence of at least one Nash Equilibrium (NE) is proven exploiting the power of submodular games. A best response dynamics framework and two alternative reinforcement learning algorithms are introduced that converge to a NE, and their trade-offs are discussed. The overall framework performance evaluation is achieved via modeling and simulation, in terms of its efficiency and effectiveness, under different operation approaches and scenarios

    A Survey of Resource Management Challenges in Multi-cloud Environment: Taxonomy and Empirical Analysis

    Get PDF
    Cloud computing has seen a great deal of interest by researchers and industrial firms since its first coined. Different perspectives and research problems, such as energy efficiency, security and threats, to name but a few, have been dealt with and addressed from cloud computing perspective. However, cloud computing environment still encounters a major challenge of how to allocate and manage computational resources efficiently. Furthermore, due to the different architectures and cloud computing networks and models used (i.e., federated clouds, VM migrations, cloud brokerage), the complexity of resource management in the cloud has been increased dramatically. Cloud providers and service consumers have the cloud brokers working as the intermediaries between them, and the confusion among the cloud computing parties (consumers, brokers, data centres and service providers) on who is responsible for managing the request of cloud resources is a key issue. In a traditional scenario, upon renting the various cloud resources from the providers, the cloud brokers engage in subletting and managing these resources to the service consumers. However, providers’ usually deal with many brokers, and vice versa, and any dispute of any kind between the providers and the brokers will lead to service unavailability, in which the consumer is the only victim. Therefore, managing cloud resources and services still needs a lot of attention and effort. This paper expresses the survey on the systems of the cloud brokerage resource management issues in multi-cloud environments

    Evolutionary Game Theoretic Multi-Objective Optimization Algorithms and Their Applications

    Get PDF
    Multi-objective optimization problems require more than one objective functions to be optimized simultaneously. They are widely applied in many science fields, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conicting objectives. Most of the real world multi-objective optimization problems are NP-Hard problems. It may be too computationally costly to find an exact solution but sometimes a near optimal solution is sufficient. In these cases, Multi-Objective Evolutionary Algorithms (MOEAs) provide good approximate solutions to problems that cannot be solved easily using other techniques. However Evolutionary Algorithm is not stable due to its random nature, it may produce very different results every time it runs. This dissertation proposes an Evolutionary Game Theory (EGT) framework based algorithm (EGTMOA) that provides optimality and stability at the same time. EGTMOA combines the notion of stability from EGT and optimality from MOEA to form a novel and promising algorithm to solve multi-objective optimization problems. This dissertation studies three different multi-objective optimization applications, Cloud Virtual Machine Placement, Body Sensor Networks, and Multi-Hub Molecular Communication along with their proposed EGTMOA framework based algorithms. Experiment results show that EGTMOAs outperform many well known multi-objective evolutionary algorithms in stability, performance and runtime

    Resource Allocation and Service Management in Next Generation 5G Wireless Networks

    Get PDF
    The accelerated evolution towards next generation networks is expected to dramatically increase mobile data traffic, posing challenging requirements for future radio cellular communications. User connections are multiplying, whilst data hungry content is dominating wireless services putting significant pressure on network's available spectrum. Ensuring energy-efficient and low latency transmissions, while maintaining advanced Quality of Service (QoS) and high standards of user experience are of profound importance in order to address diversifying user prerequisites and ensure superior and sustainable network performance. At the same time, the rise of 5G networks and the Internet of Things (IoT) evolution is transforming wireless infrastructure towards enhanced heterogeneity, multi-tier architectures and standards, as well as new disruptive telecommunication technologies. The above developments require a rethinking of how wireless networks are designed and operate, in conjunction with the need to understand more holistically how users interact with the network and with each other. In this dissertation, we tackle the problem of efficient resource allocation and service management in various network topologies under a user-centric approach. In the direction of ad-hoc and self-organizing networks where the decision making process lies at the user level, we develop a novel and generic enough framework capable of solving a wide array of problems with regards to resource distribution in an adaptable and multi-disciplinary manner. Aiming at maximizing user satisfaction and also achieve high performance - low power resource utilization, the theory of network utility maximization is adopted, with the examined problems being formulated as non-cooperative games. The considered games are solved via the principles of Game Theory and Optimization, while iterative and low complexity algorithms establish their convergence to steady operational outcomes, i.e., Nash Equilibrium points. This thesis consists a meaningful contribution to the current state of the art research in the field of wireless network optimization, by allowing users to control multiple degrees of freedom with regards to their transmission, considering mobile customers and their strategies as the key elements for the amelioration of network's performance, while also adopting novel technologies in the resource management problems. First, multi-variable resource allocation problems are studied for multi-tier architectures with the use of femtocells, addressing the topic of efficient power and/or rate control, while also the topic is examined in Visible Light Communication (VLC) networks under various access technologies. Next, the problem of customized resource pricing is considered as a separate and bounded resource to be optimized under distinct scenarios, which expresses users' willingness to pay instead of being commonly implemented by a central administrator in the form of penalties. The investigation is further expanded by examining the case of service provider selection in competitive telecommunication markets which aim to increase their market share by applying different pricing policies, while the users model the selection process by behaving as learning automata under a Machine Learning framework. Additionally, the problem of resource allocation is examined for heterogeneous services where users are enabled to dynamically pick the modules needed for their transmission based on their preferences, via the concept of Service Bundling. Moreover, in this thesis we examine the correlation of users' energy requirements with their transmission needs, by allowing the adaptive energy harvesting to reflect the consumed power in the subsequent information transmission in Wireless Powered Communication Networks (WPCNs). Furthermore, in this thesis a fresh perspective with respect to resource allocation is provided assuming real life conditions, by modeling user behavior under Prospect Theory. Subjectivity in decisions of users is introduced in situations of high uncertainty in a more pragmatic manner compared to the literature, where they behave as blind utility maximizers. In addition, network spectrum is considered as a fragile resource which might collapse if over-exploited under the principles of the Tragedy of the Commons, allowing hence users to sense risk and redefine their strategies accordingly. The above framework is applied in different cases where users have to select between a safe and a common pool of resources (CPR) i.e., licensed and unlicensed bands, different access technologies, etc., while also the impact of pricing in protecting resource fragility is studied. Additionally, the above resource allocation problems are expanded in Public Safety Networks (PSNs) assisted by Unmanned Aerial Vehicles (UAVs), while also aspects related to network security against malign user behaviors are examined. Finally, all the above problems are thoroughly evaluated and tested via a series of arithmetic simulations with regards to the main characteristics of their operation, as well as against other approaches from the literature. In each case, important performance gains are identified with respect to the overall energy savings and increased spectrum utilization, while also the advantages of the proposed framework are mirrored in the improvement of the satisfaction and the superior Quality of Service of each user within the network. Lastly, the flexibility and scalability of this work allow for interesting applications in other domains related to resource allocation in wireless networks and beyond
    corecore