11,152 research outputs found

    Eco-driving technology for sustainable road transport: A review

    Full text link
    © 2018 Elsevier Ltd Road transport consumes significant quantities of fossil fuel and accounts for a significant proportion of CO2 and pollutant emissions worldwide. The driver is a major and often overlooked factor that determines vehicle performance. Eco-driving is a relatively low-cost and immediate measure to reduce fuel consumption and emissions significantly. This paper reviews the major factors, research methods and implementation of eco-driving technology. The major factors of eco-driving are acceleration/deceleration, driving speed, route choice and idling. Eco-driving training programs and in-vehicle feedback devices are commonly used to implement eco-driving skills. After training or using in-vehicle devices, immediate and significant reductions in fuel consumption and CO2 emissions have been observed with slightly increased travel time. However, the impacts of both methods attenuate over time due to the ingrained driving habits developed over the years. These findings imply the necessity of developing quantitative eco-driving patterns that could be integrated into vehicle hardware so as to generate more constant and uniform improvements, as well as developing more effective and lasting training programs and in-vehicle devices. Current eco-driving studies mainly focus on the fuel savings and CO2 reduction of individual vehicles, but ignore the pollutant emissions and the impacts at network levels. Finally, the challenges and future research directions of eco-driving technology are elaborated

    The activation of eco-driving mental models: can text messages prime drivers to use their existing knowledge and skills?

    Get PDF
    Eco-driving campaigns have traditionally assumed that drivers lack the necessary knowledge and skills and that this is something that needs rectifying. Therefore, many support systems have been designed to closely guide drivers and fine-tune their proficiency. However, research suggests that drivers already possess a substantial amount of the necessary knowledge and skills regarding eco-driving. In previous studies, participants used these effectively when they were explicitly asked to drive fuel-efficiently. In contrast, they used their safe driving skills when they were instructed to drive as they would normally. Hence, it is assumed that many drivers choose not to engage purposefully in eco-driving in their everyday lives. The aim of the current study was to investigate the effect of simple, periodic text messages (nine messages in 2 weeks) on drivers’ eco- and safe driving performance. It was hypothesised that provision of eco-driving primes and advice would encourage the activation of their eco-driving mental models and that comparable safety primes increase driving safety. For this purpose, a driving simulator experiment was conducted. All participants performed a pre-test drive and were then randomly divided into four groups, which received different interventions. For a period of 2 weeks, one group received text messages with eco-driving primes and another group received safety primes. A third group received advice messages on how to eco-drive. The fourth group were instructed by the experimenter to drive fuel-efficiently, immediately before driving, with no text message intervention. A post-test drive measured behavioural changes in scenarios deemed relevant to eco- and safe driving. The results suggest that the eco-driving prime and advice text messages did not have the desired effect. In comparison, asking drivers to drive fuel-efficiently led to eco-driving behaviours. These outcomes demonstrate the difficulty in changing ingrained habits. Future research is needed to strengthen such messages or activate existing knowledge and skills in other ways, so driver behaviour can be changed in cost-efficient ways

    An Optimization Approach for Energy Efficient Coordination Control of Vehicles in Merging Highways

    Get PDF
    Environmental concerns along with stronger governmental regulations regarding automotive fuel-economy and greenhouse-gas emissions are contributing to the push for development of more sustainable transportation technologies. Furthermore, the widespread use of the automobile gives rise to other issues such as traffic congestion and increasing traffic accidents. Consequently, two main goals of new technologies are the reduction of vehicle fuel consumption and emissions and the reduction of traffic congestion. While an extensive list of published work addresses the problem of fuel consumption reduction by optimizing the vehicle powertrain operations, particularly in the case of hybrid electric vehicles (HEV), approaches like eco-driving and traffic coordination have been studied more recently as alternative methods that can, in addition, address the problem of traffic congestion and traffic accidents reduction. This dissertation builds on some of those approaches, with particular emphasis on autonomous vehicle coordination control. In this direction, the objective is to derive an optimization approach for energy efficient and safe coordination control of vehicles in merging highways. Most of the current optimization-based centralized approaches to this problem are solved numerically, at the expense of a high computational load which limits their potential for real-time implementation. In addition, closed-form solutions, which are desired to facilitate traffic analysis and the development of approaches to address interconnected merging/intersection points and achieve further traffic improvements at the road-network level, are very limited in the literature. In this dissertation, through the application of the Pontryagin’s minimum principle, a closed-form solution is obtained which allows the implementation of a real-time centralized optimal control for fleets of vehicles. The results of applying the proposed framework show that the system can reduce the fuel consumption by up to 50% and the travel time by an average of 6.9% with respect to a scenario with not coordination strategy. By integrating the traffic coordination scheme with in-vehicle energy management, a two level optimization system is achieved which allows assessing the benefits of integrating hybrid electric vehicles into the road network. Regarding in-vehicle energy optimization, four methods are developed to improve the tuning process of the equivalent consumption optimization strategy (ECMS). First, two model predictive control (MPC)-based strategies are implemented and the results show improvements in the efficiency obtained with the standard ECMS implementation. On the other hand, the research efforts focus in performing analysis of the engine and electric motor operating points which can lead to the optimal tuning of the ECMS with reduced iterations. Two approaches are evaluated and even though the results in fuel economy are slightly worse than those for the standard ECMS, they show potential to significantly reduce the tuning time of the ECMS. Additionally, the benefits of having less aggressive driving profiles on different powertrain technologies such as conventional, plug-in hybrid and electric vehicles are studied

    Fuel consumption and exhaust emissions of diesel vehicles in worldwide harmonized light vehicles test cycles and their sensitivities to eco-driving factors

    Get PDF
    Large amounts of fossil fuels are 14 consumed by motor vehicles annually, and hazardous exhaust emissions from the motor vehicles have caused serious problems to environment and human health. Eco-driving can effectively improve the fuel economy and decrease the exhaust emissions, which makes it vital to analyze the fuel consumption and exhaust emissions at given driving cycle, and investigate their sensitivities to eco-driving factors. In this paper, the fuel consumption and exhaust emissions of a Euro-6 compliant light-duty diesel vehicle were tested in Worldwide Harmonized Light Vehicles Test Cycles on a chassis dynamometer; further, the sensitivities of the eco-driving factors that influence the fuel economy and exhaust emissions were analyzed using validated vehicle model. For the vehicle model simulation, the effect of the coolant temperature on fuel consumption and exhaust emission only considered its effect on lubricating oil viscosity. The results showed that vehicle acceleration and velocity dominates the fuel consumption rates in Worldwide Harmonized Light Vehicles Test Cycles, where more than 50% of the exhaust emissions was emitted in the first 300 seconds; also, fuel economy and exhaust emission factors showed a significant dependency on the road grade, coolant temperature, vehicle velocity and mass. For the driver-controllable factors, high vehicle velocity and low road grade (via route-choice) were recommended to achieve low fuel consumption and exhaust emissions

    Reducing vehicle fuel consumption and exhaust emissions from the application of a green-safety device under real driving.

    Full text link
    Vehicle emissions have a significantly negative impact on climate change, air quality and human health. Drivers of vehicles are the last major and often overlooked factor that determines vehicle performance. Eco-driving is a relatively low-cost and immediate measure to reduce fuel consumption and emissions significantly. This paper reports investigation of the effects of an on-board green-safety device on fuel consumption and emissions for both experienced and inexperienced drivers. A portable emissions measurement system (PEMS) was installed on a diesel light goods vehicle (LGV) to measure real-driving emissions (RDE), including total hydrocarbons (THC), CO CO2, NO, NO2 and particulate matter (PM). In addition, driving parameters (e.g. vehicle speed and acceleration) and environmental parameters (e.g. ambient temperature, humidity and pressure) were recorded in the experiments. The experimental results were evaluated using the Vehicle Specific Power (VSP) methodology to understand the effects of driving behavior on fuel consumption and emissions. The results indicated that driving behavior was improved for both experienced and inexperienced drivers after activation of the on-board green-safety device. In addition, the average time spent was shifted from higher to lower VSP modes by avoiding excessive speed, and aggressive accelerations and decelerations. For experienced drivers, the average fuel consumption and NO, NO2 and soot emissions were reduced by 5%, 56%, 39% and 35%, respectively, with the on-board green-safety device. For inexperienced drivers, the average reductions were 6%, 65%, 50% and 19%, respectively. Moreover, the long-term formed habits of experienced drivers are harder to be changed to accept the assistance of the green-safety device, whereas inexperienced drivers are likely to be more receptive to change and improve their driving behaviors

    KAJIAN ECO DRIVING PADA BUS RAPID TRANSIT KORIDOR VI UNTUK MENDUKUNG KONSEP TRANSPORTASI BERKELANJUTA N DI KOTA SEMARA NG

    Get PDF
    BRT merupakan salah satu sarana angkutan massal yang memiliki fungsi utama yaitu untuk melayani pergerakan manusia. Adanya BRT juga dapat dijadikan sebagai alternatif sebagai sarana transportasi selain angkutan pribadi. Untuk menjaga keberlanjutan BRT perlu untuk menerapkan eco driving dalam berkendara. Selain menjaga keberlanjutan armada, penerapan eco driving juga dapat mengurangi emisi gas yang dikeluarkan dan untuk menghemat konsumsi bahan bakar. Emisi gas yang dikeluarkan dapat memberik an dampak negatif terhadap lingkungan dalam jangka panjang sedangkan penggunaan bahan bakar yang berlebih dapat memberikan dampak terhadap ekonomi jika bahan bakar mulai susah untuk didapatkan

    D41.1 : Performance Indicators and ecoDriver Test Design

    Get PDF
    This deliverable details the proposed assessment approaches and the design of field trials for data provision. Research questions and objectives of the project were divided into three major themes: user acceptance, behaviour, as well as energy use and emissions, which led to the formation of 24 hypotheses in total. A large number of Performance Indicators were identified, which will be used to validate the hypotheses. These Performance Indicators were grouped into 16 categories, covering the aforementioned three research themes. To provide empirical data for validating the hypotheses and answering the research questions, a series of field trials will betaken place in SP3. There are 12 fleets of vehicles, across 7 countries and covering a wide range of vehicle types. This deliverable outlines experimental design of the field trials, including fleet specifications, participant recruitment, route selection, test procedures, and data collection protocol etc. There are similarities but also individual characteristics of these experimental designs across the fleets and test sites, in order to produce all necessary data for addressing the research question
    • …
    corecore