88 research outputs found

    A Comparative Study of Queue, Delay, and Loss Characteristics of AQM Schemes in QoS-enabled Networks

    Get PDF
    One of the major component in a QoS-enabled network is active queue management (AQM). Over the last decade numerous AQM schemes have been proposed in the literature. However, much recent work has focused on improving AQM performance through alternate approaches. This study focuses on an unbiased comparative evaluation of the various proposals. The evaluation methodology adopted is the following: we first define the relationship between the terminologies used in this paper, briefly introduce the queue, delay, and loss characteristics-- a subset of network characteristics that can be used to describe the behavior of network entities, and give their mathematical description. Next, we present a method that would be a successful case study based on the NS simulation technique and simulation-based comparisons of AQM schemes chosen, which will help understand how they differ from in terms of per-node queueing information and per-flow end-to-end behavior. Simulation results showed that PI schemes, a feedback-based mechanism, can assist delay sensitive applications to adapt dynamically to underlying network and to stabilize the end-to-end QoS within an acceptable requirement. To understand this attribute and behavior is important for the proper design of queue disciplines, for the provisioning of queues and link capacity, and for choosing parameters in simulation

    Evaluation Study for Delay and Link Utilization with the New-Additive Increase Multiplicative Decrease Congestion Avoidance and Control Algorithm

    Get PDF
    As the Internet becomes increasingly heterogeneous, the issue of congestion avoidance and control becomes ever more important. And the queue length, end-to-end delays and link utilization is some of the important things in term of congestion avoidance and control mechanisms. In this work we continue to study the performances of the New-AIMD (Additive Increase Multiplicative Decrease) mechanism as one of the core protocols for TCP congestion avoidance and control algorithm, we want to evaluate the effect of using the AIMD algorithm after developing it to find a new approach, as we called it the New-AIMD algorithm to measure the Queue length, delay and bottleneck link utilization, and use the NCTUns simulator to get the results after make the modification for the mechanism. And we will use the Droptail mechanism as the active queue management mechanism (AQM) in the bottleneck router. After implementation of our new approach with different number of flows, we expect the delay will less when we measure the delay dependent on the throughput for all the system, and also we expect to get end-to-end delay less. And we will measure the second type of delay a (queuing delay), as we shown in the figure 1 bellow. Also we will measure the bottleneck link utilization, and we expect to get high utilization for bottleneck link with using this mechanism, and avoid the collisions in the link

    BOB-RED queue management for IEEE 802.15.4 wireless sensor networks

    Get PDF
    This study is aimed at exploring why many economists propose a transfer scheme and debt mutualisation for the Eurozone. This would equip the Eurozone with better tools to deal with an economic shock, like the 2010-2012 sovereign debt crisis, thus making it more financially stable. After the theoretical presentation, the study presents a unique institutional design with an EU Treasury that manages debt mutualisation and a transfer scheme as well as other competences that address other present economic challenges. Crucial to the study are the issues of moral hazard and adverse selection that arise when thinking of European economic integration.L’objectiu del treball és explorar la raó per la qual molts economistes proposen un sistema de transferències fiscals i la mutualització del deute a l’Eurozona. Així se la dotaria amb eines més efectives per pal·liar un xoc econòmic, com la crisi del deute sobirà del 2010-2012. A continuació, es presenta un disseny institucional únic d’un Tresor de l’Euro que gestionaria les competències esmentades (i d’altres) per combatre alguns dels reptes econòmics actuals. El risc moral i de selecció adversa, qüestions que sorgeixen en pensar la drecera que ha de prendre la integració econòmica Europea, són cabdals per aquest estudi

    A multi-objective particle swarm optimized fuzzy logic congestion detection and dual explicit notification mechanism for IP networks.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2006.The Internet has experienced a tremendous growth over the past two decades and with that growth have come severe congestion problems. Research efforts to alleviate the congestion problem can broadly be classified into three groups: Cl) Router based congestion detection; (2) Generation and transmission of congestion notification signal to the traffic sources; (3) End-to-end algorithms which control the flow of traffic between the end hosts. This dissertation has largely addressed the first two groups which are basically router initiated. Router based congestion detection mechanisms, commonly known as Active Queue Management (AQM), can be classified into two groups: conventional mathematical analytical techniques and fuzzy logic based techniques. Research has shown that fuzzy logic techniques are more effective and robust compared to the conventional techniques because they do not rely on the availability of a precise mathematical model of Internet. They use linguistic knowledge and are, therefore, better placed to handle the complexities associated with the non-linearity and dynamics of the Internet. In spite of all these developments, there still exists ample room for improvement because, practically, there has been a slow deployment of AQM mechanisms. In the first part of this dissertation, we study the major AQM schemes in both the conventional and the fuzzy logic domain in order to uncover the problems that have hampered their deployment in practical implementations. Based on the findings from this study, we model the Internet congestion problem as a multi-objective problem. We propose a Fuzzy Logic Congestion Detection (FLCD) which synergistically combines the good characteristics of the fuzzy approaches with those of the conventional approaches. We design the membership functions (MFs) of the FLCD algorithm automatically by using Multi-objective Particle Swarm Optimization (MOPSO), a population based stochastic optimization algorithm. This enables the FLCD algorithm to achieve optimal performance on all the major objectives of Internet congestion control. The FLCD algorithm is compared with the basic Fuzzy Logic AQM and the Random Explicit Marking (REM) algorithms on a best effort network. Simulation results show that the FLCD algorithm provides high link utilization whilst maintaining lower jitter and packet loss. It also exhibits higher fairness and stability compared to its basic variant and REM. We extend this concept to Proportional Differentiated Services network environment where the FLCD algorithm outperforms the traditional Weighted RED algorithm. We also propose self learning and organization structures which enable the FLCD algorithm to achieve a more stable queue, lower packet losses and UDP traffic delay in dynamic traffic environments on both wired and wireless networks. In the second part of this dissertation, we present the congestion notification mechanisms which have been proposed for wired and satellite networks. We propose an FLCD based dual explicit congestion notification algorithm which combines the merits of the Explicit Congestion Notification (ECN) and the Backward Explicit Congestion Notification (BECN) mechanisms. In this proposal, the ECN mechanism is invoked based on the packet marking probability while the BECN mechanism is invoked based on the BECN parameter which helps to ensure that BECN is invoked only when congestion is severe. Motivated by the fact that TCP reacts to tbe congestion notification signal only once during a round trip time (RTT), we propose an RTT based BECN decay function. This reduces the invocation of the BECN mechanism and resultantly the generation of reverse traffic during an RTT. Compared to the traditional explicit notification mechanisms, simulation results show that the new approach exhibits lower packet loss rates and higher queue stability on wired networks. It also exhibits lower packet loss rates, higher good-put and link utilization on satellite networks. We also observe that the BECN decay function reduces reverse traffic significantly on both wired and satellite networks while ensuring that performance remains virtually the same as in the algorithm without BECN traffic reduction.Print copy complete; page numbering of 105-108 incorrect

    A Credit-based Home Access Point (CHAP) to Improve Application Quality on IEEE 802.11 Networks

    Get PDF
    Increasing availability of high-speed Internet and wireless access points has allowed home users to connect not only their computers but various other devices to the Internet. Every device running different applications requires unique Quality of Service (QoS). It has been shown that delay- sensitive applications, such as VoIP, remote login and online game sessions, suffer increased latency in the presence of throughput-sensitive applications such as FTP and P2P. Currently, there is no mechanism at the wireless AP to mitigate these effects except explicitly classifying the traffic based on port numbers or host IP addresses. We propose CHAP, a credit-based queue management technique, to eliminate the explicit configuration process and dynamically adjust the priority of all the flows from different devices to match their QoS requirements and wireless conditions to improve application quality in home networks. An analytical model is used to analyze the interaction between flows and credits and resulting queueing delays for packets. CHAP is evaluated using Network Simulator (NS2) under a wide range of conditions against First-In-First- Out (FIFO) and Strict Priority Queue (SPQ) scheduling algorithms. CHAP improves the quality of an online game, a VoIP session, a video streaming session, and a Web browsing activity by 20%, 3%, 93%, and 51%, respectively, compared to FIFO in the presence of an FTP download. CHAP provides these improvements similar to SPQ without an explicit classification of flows and a pre- configured scheduling policy. A Linux implementation of CHAP is used to evaluate its performance in a real residential network against FIFO. CHAP reduces the web response time by up to 85% compared to FIFO in the presence of a bulk file download. Our contributions include an analytic model for the credit-based queue management, simulation, and implementation of CHAP, which provides QoS with minimal configuration at the AP

    Congestion Control for Adaptive Satellite Communication Systems with Intelligent Systems

    Get PDF
    With the advent of life critical and real-time services such as remote operations over satellite, e-health etc, providing the guaranteed minimum level of services at every ground terminal of the satellite communication system has gained utmost priority. Ground terminals and the hub are not equipped with the required intelligence to predict and react to inclement and dynamic weather conditions on its own. The focus of this thesis is to develop intelligent algorithms that would aid in adaptive management of the quality of service at the ground terminal and the gateway level. This is done to adapt both the ground terminal and gateway to changing weather conditions and to attempt to maintain a steady throughput level and Quality of Service (QoS) requirements on queue delay, jitter, and probability of loss of packets. The existing satellite system employs the First-In-First-Out routing algorithm to control congestion in their networks. This mechanism is not equipped with adequate ability to contend with changing link capacities, a common result due to bad weather and faults and to provide different levels of prioritized service to the customers that satisfies QoS requirements. This research proposes to use the reported strength of fuzzy logic in controlling highly non-linear and complex system such as the satellite communication network. The proposed fuzzy based model when integrated into the satellite gateway provides the needed robustness to the ground terminals to comprehend with varying levels of traffic and dynamic impacts of weather

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    Treatment-Based Classi?cation in Residential Wireless Access Points

    Get PDF
    IEEE 802.11 wireless access points (APs) act as the central communication hub inside homes, connecting all networked devices to the Internet. Home users run a variety of network applications with diverse Quality-of-Service requirements (QoS) through their APs. However, wireless APs are often the bottleneck in residential networks as broadband connection speeds keep increasing. Because of the lack of QoS support and complicated configuration procedures in most off-the-shelf APs, users can experience QoS degradation with their wireless networks, especially when multiple applications are running concurrently. This dissertation presents CATNAP, Classification And Treatment iN an AP , to provide better QoS support for various applications over residential wireless networks, especially timely delivery for real-time applications and high throughput for download-based applications. CATNAP consists of three major components: supporting functions, classifiers, and treatment modules. The supporting functions collect necessary flow level statistics and feed it into the CATNAP classifiers. Then, the CATNAP classifiers categorize flows along three-dimensions: response-based/non-response-based, interactive/non-interactive, and greedy/non-greedy. Each CATNAP traffic category can be directly mapped to one of the following treatments: push/delay, limited advertised window size/drop, and reserve bandwidth. Based on the classification results, the CATNAP treatment module automatically applies the treatment policy to provide better QoS support. CATNAP is implemented with the NS network simulator, and evaluated against DropTail and Strict Priority Queue (SPQ) under various network and traffic conditions. In most simulation cases, CATNAP provides better QoS supports than DropTail: it lowers queuing delay for multimedia applications such as VoIP, games and video, fairly treats FTP flows with various round trip times, and is even functional when misbehaving UDP traffic is present. Unlike current QoS methods, CATNAP is a plug-and-play solution, automatically classifying and treating flows without any user configuration, or any modification to end hosts or applications

    Simulation and Evaluation of Wired and Wireless Networks with NS2, NS3 and OMNET++

    Get PDF
    Communication systems are emerging rapidly with the revolutionary growth in terms of networking protocols, wired and wireless technologies, user applications and other IEEE standards. Numbers of industrial as well as academic organizations around the globe are bringing in light new innovations and ideas in the field of communication systems. These innovations and ideas require intense evaluation at initial phases of development with the use of real systems in place. Usually the real systems are expensive and not affordable for the evaluation. In this case, network simulators provide a complete cost-effective testbed for the simulation and evaluation of the underlined innovations and ideas. In past, numerous studies were conducted for the performance evaluation of network simulators based on CPU and memory utilization. However, performance evaluation based on other metrics such as congestion window, throughput, delay, packet delivery ratio and packet loss ratio was not conducted intensively. In this thesis, network simulators such as NS2, NS3 and OMNET++ will be evaluated and compared for wired and wireless networks based on congestion window, throughput, delay, packet delivery and packet loss ratio. In the theoretical part, information will be provided about the wired and wireless networks and mathematical interpretation of various components used for these networks. Furthermore, technical details about the network simulators will be presented including architectural design, programming languages and platform libraries. Advantages and disadvantages of these network simulators will also be highlighted. In the last part, the details about the experiments and analysis conducted for wired and wireless networks will be provided. At the end, findings will be concluded and future prospects of the study will be advised.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore