200 research outputs found

    Autonomous navigation strategies for UGVs/UAVs

    Get PDF

    Quadrotor team modeling and control for DLO transportation

    Get PDF
    94 p.Esta Tesis realiza una propuesta de un modelado dinámico para el transporte de sólidos lineales deformables (SLD) mediante un equipo de cuadricópteros. En este modelo intervienen tres factores: - Modelado dinámico del sólido lineal a transportar. - Modelo dinámico del cuadricóptero para que tenga en cuenta la dinámica pasiva y los efectos del SLD. - Estrategia de control para un transporte e ciente y robusto. Diferenciamos dos tareas principales: (a) lograr una con guración cuasiestacionaria de una distribución de carga equivalente a transportar entre todos los robots. (b) Ejecutar el transporte en un plano horizontal de todo el sistema. El transporte se realiza mediante una con guración de seguir al líder en columna, pero los cuadricópteros individualmente tienen que ser su cientemente robustos para afrontar todas las no-linealidades provocadas por la dinámica del SLD y perturbaciones externas, como el viento. Los controladores del cuadricóptero se han diseñado para asegurar la estabilidad del sistema y una rápida convergencia del sistema. Se han comparado y testeado estrategias de control en tiempo real y no-real para comprobar la bondad y capacidad de ajuste a las condiciones dinámicas cambiantes del sistema. También se ha estudiado la escalabilidad del sistema

    Adaptive Controller with PID, FOPID, and NPID Compensators for Tracking Control of Electric – Wind Vehicle

    Get PDF
    This paper presents a new combination between the Model Reference Adaptive Control (MRAC) with several types of PID’s controllers (PID, Fractional order PID (FOPID), and Nonlinear PID (NPID)) optimized using a new Covid-19 algorithm. The proposed control techniques had been applied on a new model for an electric-wind vehicle, which can catch the wind that blows in the opposite direction of a moving vehicle to receive wind; a wind turbine is installed on the vehicle’s front. The generator converts wind energy into electricity and stores it into a backup battery to switch it when the primary battery is empty. The simulation results prove that the new model of electric–wind vehicles will save power and allow the vehicle to continue moving while the other battery charges. In addition, a comparative study between different types of control algorithms had been developed and investigated to improve the vehicle dynamic response. The comparison shows that the MRAC with the NPID compensator can absorb the nonlinearity (air resistance and wheel friction) where it has a minimum overshoot, rise time, and settling time (35 seconds) among other control techniques compensators (PID and FOPID).

    CONTROL STRATEGY OF MULTIROTOR PLATFORM UNDER NOMINAL AND FAULT CONDITIONS USING A DUAL-LOOP CONTROL SCHEME USED FOR EARTH-BASED SPACECRAFT CONTROL TESTING

    Get PDF
    Over the last decade, autonomous Unmanned Aerial Vehicles (UAVs) have seen increased usage in industrial, defense, research, and academic applications. Specific attention is given to multirotor platforms due to their high maneuverability, utility, and accessibility. As such, multirotors are often utilized in a variety of operating conditions such as populated areas, hazardous environments, inclement weather, etc. In this study, the effectiveness of multirotor platforms, specifically quadrotors, to behave as Earth-based satellite test platforms is discussed. Additionally, due to concerns over system operations under such circumstances, it becomes critical that multirotors are capable of operation despite experiencing undesired conditions and collisions which make the platform susceptible to on-board hardware faults. Without countermeasures to account for such faults, specifically actuator faults, a multirotors will experience catastrophic failure. In this thesis, a control strategy for a quadrotor under nominal and fault conditions is proposed. The process of defining the quadrotor dynamic model is discussed in detail. A dual-loop SMC/PID control scheme is proposed to control the attitude and position states of the nominal system. Actuator faults on-board the quadrotor are interpreted as motor performance losses, specifically loss in rotor speeds. To control a faulty system, an additive control scheme is implemented in conjunction with the nominal scheme. The quadrotor platform is developed via analysis of the various subcomponents. In addition, various physical parameters of the quadrotor are determined experimentally. Simulated and experimental testing showed promising results, and provide encouragement for further refinement in the future

    Advanced Modeling, Control, and Optimization Methods in Power Hybrid Systems - 2021

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on the Energy Internet, blockchain technology and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above
    corecore