91 research outputs found

    INTERFACE DESIGN FOR A VIRTUAL REALITY-ENHANCED IMAGE-GUIDED SURGERY PLATFORM USING SURGEON-CONTROLLED VIEWING TECHNIQUES

    Get PDF
    Initiative has been taken to develop a VR-guided cardiac interface that will display and deliver information without affecting the surgeons’ natural workflow while yielding better accuracy and task completion time than the existing setup. This paper discusses the design process, the development of comparable user interface prototypes as well as an evaluation methodology that can measure user performance and workload for each of the suggested display concepts. User-based studies and expert recommendations are used in conjunction to es­ tablish design guidelines for our VR-guided surgical platform. As a result, a better understanding of autonomous view control, depth display, and use of virtual context, is attained. In addition, three proposed interfaces have been developed to allow a surgeon to control the view of the virtual environment intra-operatively. Comparative evaluation of the three implemented interface prototypes in a simulated surgical task scenario, revealed performance advantages for stereoscopic and monoscopic biplanar display conditions, as well as the differences between three types of control modalities. One particular interface prototype demonstrated significant improvement in task performance. Design recommendations are made for this interface as well as the others as we prepare for prospective development iterations

    Conceptual design study for a teleoperator visual system, phase 2

    Get PDF
    An analysis of the concept for the hybrid stereo-monoscopic television visual system is reported. The visual concept is described along with the following subsystems: illumination, deployment/articulation, telecommunications, visual displays, and the controls and display station

    Human operator performance of remotely controlled tasks: Teleoperator research conducted at NASA's George C. Marshal Space Flight Center

    Get PDF
    The capabilities within the teleoperator laboratories to perform remote and teleoperated investigations for a wide variety of applications are described. Three major teleoperator issues are addressed: the human operator, the remote control and effecting subsystems, and the human/machine system performance results for specific teleoperated tasks

    Three-dimensional media for mobile devices

    Get PDF
    Cataloged from PDF version of article.This paper aims at providing an overview of the core technologies enabling the delivery of 3-D Media to next-generation mobile devices. To succeed in the design of the corresponding system, a profound knowledge about the human visual system and the visual cues that form the perception of depth, combined with understanding of the user requirements for designing user experience for mobile 3-D media, are required. These aspects are addressed first and related with the critical parts of the generic system within a novel user-centered research framework. Next-generation mobile devices are characterized through their portable 3-D displays, as those are considered critical for enabling a genuine 3-D experience on mobiles. Quality of 3-D content is emphasized as the most important factor for the adoption of the new technology. Quality is characterized through the most typical, 3-D-specific visual artifacts on portable 3-D displays and through subjective tests addressing the acceptance and satisfaction of different 3-D video representation, coding, and transmission methods. An emphasis is put on 3-D video broadcast over digital video broadcasting-handheld (DVB-H) in order to illustrate the importance of the joint source-channel optimization of 3-D video for its efficient compression and robust transmission over error-prone channels. The comparative results obtained identify the best coding and transmission approaches and enlighten the interaction between video quality and depth perception along with the influence of the context of media use. Finally, the paper speculates on the role and place of 3-D multimedia mobile devices in the future internet continuum involving the users in cocreation and refining of rich 3-D media content

    Development of an augmented reality guided computer assisted orthopaedic surgery system

    Get PDF
    Previously held under moratorium from 1st December 2016 until 1st December 2021.This body of work documents the developed of a proof of concept augmented reality guided computer assisted orthopaedic surgery system – ARgCAOS. After initial investigation a visible-spectrum single camera tool-mounted tracking system based upon fiducial planar markers was implemented. The use of visible-spectrum cameras, as opposed to the infra-red cameras typically used by surgical tracking systems, allowed the captured image to be streamed to a display in an intelligible fashion. The tracking information defined the location of physical objects relative to the camera. Therefore, this information allowed virtual models to be overlaid onto the camera image. This produced a convincing augmented experience, whereby the virtual objects appeared to be within the physical world, moving with both the camera and markers as expected of physical objects. Analysis of the first generation system identified both accuracy and graphical inadequacies, prompting the development of a second generation system. This too was based upon a tool-mounted fiducial marker system, and improved performance to near-millimetre probing accuracy. A resection system was incorporated into the system, and utilising the tracking information controlled resection was performed, producing sub-millimetre accuracies. Several complications resulted from the tool-mounted approach. Therefore, a third generation system was developed. This final generation deployed a stereoscopic visible-spectrum camera system affixed to a head-mounted display worn by the user. The system allowed the augmentation of the natural view of the user, providing convincing and immersive three dimensional augmented guidance, with probing and resection accuracies of 0.55±0.04 and 0.34±0.04 mm, respectively.This body of work documents the developed of a proof of concept augmented reality guided computer assisted orthopaedic surgery system – ARgCAOS. After initial investigation a visible-spectrum single camera tool-mounted tracking system based upon fiducial planar markers was implemented. The use of visible-spectrum cameras, as opposed to the infra-red cameras typically used by surgical tracking systems, allowed the captured image to be streamed to a display in an intelligible fashion. The tracking information defined the location of physical objects relative to the camera. Therefore, this information allowed virtual models to be overlaid onto the camera image. This produced a convincing augmented experience, whereby the virtual objects appeared to be within the physical world, moving with both the camera and markers as expected of physical objects. Analysis of the first generation system identified both accuracy and graphical inadequacies, prompting the development of a second generation system. This too was based upon a tool-mounted fiducial marker system, and improved performance to near-millimetre probing accuracy. A resection system was incorporated into the system, and utilising the tracking information controlled resection was performed, producing sub-millimetre accuracies. Several complications resulted from the tool-mounted approach. Therefore, a third generation system was developed. This final generation deployed a stereoscopic visible-spectrum camera system affixed to a head-mounted display worn by the user. The system allowed the augmentation of the natural view of the user, providing convincing and immersive three dimensional augmented guidance, with probing and resection accuracies of 0.55±0.04 and 0.34±0.04 mm, respectively

    Application of Human Factors in Surgery: Studies on Technique, Displays, and Performance.

    Full text link
    The overall goal of this work is to develop a framework that can be used to describe surgical procedures, measure performance, and identify ergonomic risk factors that may affect surgical outcomes and musculoskeletal stresses. Variations in technique commonly exist in surgical procedures; however, clinical evidence to support one technique over another is limited. Identifying best methods in surgical techniques and visualization equipment can reduce the risk factors for musculoskeletal fatigue among surgeons while improving surgical outcomes. This work presents a taxonomy that systematically quantifies differences in techniques among surgeons and cases. Using observed variations among surgeons, hypotheses were formulated on the relationship between different methods and outcomes that can be tested in future studies. The taxonomy was also used to formulate hypotheses on ergonomics factors that may impact surgeon’s musculoskeletal stresses and performance. Hypotheses on the effect of alternative video displays on postures and performance were tested in the laboratory setting. Results found that neck angles were significantly more erect on video displays than microscopes during simulated microsurgery skill tasks. In addition, more neck and shoulder movements were observed on the video displays than microscopes. Performance times on video displays were slower than microscopes and loupes. However, differences in performance times were smaller on the x (left/right) and y (fore/aft)-axes than the vertical z-axis. In addition, video displays were not significantly worse than other displays in overshoot and distance moved metrics that may be indicative of mechanical stress blood vessels may be exposed to in microsurgery. Contribution of this work includes: 1) development of a taxonomy for identifying best methods among variations in surgeon techniques that can be used for evidence-based training and assessment, 2) determining the impact of visualization equipment on surgeon’s risk for musculoskeletal symptoms and fatigue, and 3) measuring the impact of video displays on simulated microsurgery task performance and the limitations of such displays in surgery. Application of this work can be used to improve outcomes for both patients and medical practitioners during surgical procedures.PhDIndustrial and Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110344/1/dennyyu_1.pd

    IMPROVING DAILY CLINICAL PRACTICE WITH ABDOMINAL PATIENT SPECIFIC 3D MODELS

    Get PDF
    This thesis proposes methods and procedures to proficiently introduce patient 3D models in the daily clinical practice for diagnosis and treatment of abdominal diseases. The objective of the work consists in providing and visualizing quantitative geometrical and topological information on the anatomy of interest, and to develop systems that allow to improve radiology and surgery. The 3D visualization drastically simplifies the interpretation process of medical images and provides benefits both in diagnosing and in surgical planning phases. Further advantages can be introduced registering virtual pre-operative information (3D models) with real intra-operative information (patient and surgical instruments). The surgeon can use mixed-reality systems that allow him/her to see covered structures before reaching them, surgical navigators for see the scene (anatomy and instruments) from different point of view and smart mechatronics devices, which, knowing the anatomy, assist him/her in an active way. All these aspects are useful in terms of safety, efficiency and financial resources for the physicians, for the patient and for the sanitary system too. The entire process, from volumetric radiological images acquisition up to the use of 3D anatomical models inside the surgical room, has been studied and specific applications have been developed. A segmentation procedure has been designed taking into account acquisition protocols commonly used in radiological departments, and a software tool, that allows to obtain efficient 3D models, have been implemented and tested. The alignment problem has been investigated examining the various sources of errors during the image acquisition, in the radiological department, and during to the execution of the intervention. A rigid body registration procedure compatible with the surgical environment has been defined and implemented. The procedure has been integrated in a surgical navigation system and is useful as starting initial registration for more accurate alignment methods based on deformable approaches. Monoscopic and stereoscopic 3D localization machine vision routines, using the laparoscopic and/or generic cameras images, have been implemented to obtain intra-operative information that can be used to model abdominal deformations. Further, the use of this information for fusion and registration purposes allows to enhance the potentialities of computer assisted surgery. In particular a precise alignment between virtual and real anatomies for mixed-reality purposes, and the development of tracker-free navigation systems, has been obtained elaborating video images and providing an analytical adaptation of the virtual camera to the real camera. Clinical tests, demonstrating the usability of the proposed solutions, are reported. Test results and appreciation of radiologists and surgeons, to the proposed prototypes, encourage their integration in the daily clinical practice and future developments
    • …
    corecore