1,116 research outputs found

    Particle swarm optimization and spiral dynamic algorithm-based interval type-2 fuzzy logic control of triple-link inverted pendulum system: A comparative assessment

    Get PDF
    This paper presents investigations into the development of an interval type-2 fuzzy logic control (IT2FLC) mechanism integrated with particle swarm optimization and spiral dynamic algorithm. The particle swarm optimization and spiral dynamic algorithm are used for enhanced performance of the IT2FLC by finding optimised values for input and output controller gains and parameter values of IT2FLC membership function as comparison purpose in order to identify better solution for the system. A new model of triple-link inverted pendulum on two-wheels system, developed within SimWise 4D software environment and integrated with Matlab/Simulink for control purpose. Several tests comprising system stabilization, disturbance rejection and convergence accuracy of the algorithms are carried out to demonstrate the robustness of the control approach. It is shown that the particle swarm optimization-based control mechanism performs better than the spiral dynamic algorithm-based control in terms of system stability, disturbance rejection and reduce noise. Moreover, the particle swarm optimization-based IT2FLC shows better performance in comparison to previous research. It is envisaged that this system and control algorithm can be very useful for the development of a mobile robot with extended functionality

    Research on UBI auto insurance pricing model based on parameter adaptive SAPSO optimal fuzzy controller

    Get PDF
    Aiming at the problem of “dynamic” accurate determination of rates in UBI auto insurance pricing, this paper proposes a UBI auto insurance pricing model based on fuzzy controller and optimizes it with a parameter adaptive SASPO. On the basis of the SASPO algorithm, the movement direction of the particles can be mutated and the direction can be dynamically controlled, the inertia weight value is given by the distance between the particle and the global optimal particle, and the learning factor is calculated according to the change of the fitness value, which realizes the parameter in the running process. Effective self-adjustment. A five-dimensional fuzzy controller is constructed by selecting the monthly driving mileage, the number of violations, and the driving time at night in the UBI auto insurance data. The weights are used to form fuzzy rules, and a variety of algorithms are used to optimize the membership function and fuzzy rules and compare them. The research results show that, compared with other algorithms, the parameter adaptive SAPAO algorithm can calculate more reasonable, accurate and high-quality fuzzy rules and membership functions when processing UBI auto insurance data. The accuracy and robustness of UBI auto insurance rate determination can realize dynamic and accurate determination of UBI auto insurance rates

    Comparative Analysis Multi-Robot Formation Control Modeling Using Fuzzy Logic Type 2 – Particle Swarm Optimization

    Get PDF
    Multi-robot is a robotic system consisting of several robots that are interconnected and can communicate and collaborate with each other to complete a goal. With physical similarities, they have two controlled wheels and one free wheel that moves at the same speed. In this Problem, there is a main problem remaining in controlling the movement of the multi robot formation in searching the target. It occurs because the robots have to create dynamic geometric shapes towards the target. In its movement, it requires a control system in order to move the position as desired. For multi-robot movement formations, they have their own predetermined trajectories which are relatively constant in varying speeds and accelerations even in sudden stops. Based on these weaknesses, the robots must be able to avoid obstacles and reach the target. This research used Fuzzy Logic type 2 – Particle Swarm Optimization algorithm which was compared with Fuzzy Logic type 2 – Modified Particle Swarm Optimization and Fuzzy Logic type 2 – Dynamic Particle Swarm Optimization. Based on the experiments that had been carried out in each environment, it was found that Fuzzy Logic type 2 - Modified Particle Swarm Optimization had better iteration, time and resource and also smoother robot movement than Fuzzy Logic type 2 – Particle Swarm Optimization and Fuzzy Logic Type 2 - Dynamic Particle Swarm Optimization

    Research on UBI Auto Insurance Pricing Model Based on Parameter Adaptive SAPSO Optimal Fuzzy Controller

    Get PDF
    Aiming at the problem of “dynamic” accurate determination of rates in UBI auto insurance pricing, this paper proposes a UBI auto insurance pricing model based on fuzzy controller and optimizes it with a parameter adaptive SASPO. On the basis of the SASPO algorithm, the movement direction of the particles can be mutated and the direction can be dynamically controlled, the inertia weight value is given by the distance between the particle and the global optimal particle, and the learning factor is calculated according to the change of the fitness value, which realizes the parameter in the running process. Effective self-adjustment. A five-dimensional fuzzy controller is constructed by selecting the monthly driving mileage, the number of violations, and the driving time at night in the UBI auto insurance data. The weights are used to form fuzzy rules, and a variety of algorithms are used to optimize the membership function and fuzzy rules and compare them. The research results show that, compared with other algorithms, the parameter adaptive SAPAO algorithm can calculate more reasonable, accurate and high-quality fuzzy rules and membership functions when processing UBI auto insurance data. The accuracy and robustness of UBI auto insurance rate determination can realize dynamic and accurate determination of UBI auto insurance rates

    Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review

    Get PDF
    New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented

    Novel metaheuristic hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation

    Get PDF
    © 2014 Elsevier B.V. All rights reserved. This paper presents hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation and their application to control of a flexible manipulator system. Spiral dynamic algorithm (SDA) has faster convergence speed and good exploitation strategy. However, the incorporation of constant radius and angular displacement in its spiral model causes the exploration strategy to be less effective hence resulting in low accurate solution. Bacteria chemotaxis on the other hand, is the most prominent strategy in bacterial foraging algorithm. However, the incorporation of a constant step-size for the bacteria movement affects the algorithm performance. Defining a large step-size results in faster convergence speed but produces low accuracy while de.ning a small step-size gives high accuracy but produces slower convergence speed. The hybrid algorithms proposed in this paper synergise SDA and bacteria chemotaxis and thus introduce more effective exploration strategy leading to higher accuracy, faster convergence speed and low computation time. The proposed algorithms are tested with several benchmark functions and statistically analysed via nonparametric Friedman and Wilcoxon signed rank tests as well as parametric t-test in comparison to their predecessor algorithms. Moreover, they are used to optimise hybrid Proportional-Derivative-like fuzzy-logic controller for position tracking of a flexible manipulator system. The results show that the proposed algorithms significantly improve both convergence speed as well as fitness accuracy and result in better system response in controlling the flexible manipulator

    Cúmulo de partículas coevolutivo cooperativo usando lógica borrosa para la optimización a gran escala

    Get PDF
    A cooperative coevolutionary framework can improve the performance of optimization algorithms on large-scale problems. In this paper, we propose a new Cooperative Coevolutionary algorithm to improve our preliminary work, FuzzyPSO2. This new proposal, called CCFPSO, uses the random grouping technique that changes the size of the subcomponents in each generation. Unlike FuzzyPSO2, CCFPSO’s re-initialization of the variables, suggested by the fuzzy system, were performed on the particles with the worst fitness values. In addition, instead of updating the particles based on the global best particle, CCFPSO was updated considering the personal best particle and the neighborhood best particle. This proposal was tested on large-scale problems that resemble real-world problems (CEC2008, CEC2010), where the performance of CCFPSO was favorable in comparison with other state-of-the-art PSO versions, namely CCPSO2, SLPSO, and CSO. The experimental results indicate that using a Cooperative Coevolutionary PSO approach with a fuzzy logic system can improve results on high dimensionality problems (100 to 1000 variables).Un marco coevolutivo cooperativo puede mejorar el rendimiento de los algoritmos de optimización en problemas a gran escala. En este trabajo, proponemos un nuevo algoritmo coevolutivo cooperativo para mejorar nuestro trabajo preliminar, FuzzyPSO2. Esta nueva propuesta, denominada CCFPSO, utiliza la técnica de agrupación aleatoria que cambia el tamaño de los subcomponentes en cada generación. A diferencia de FuzzyPSO2, la reinicialización de las variables de CCFPSO, sugerida por el sistema difuso, se realizaron sobre las partículas con los peores valores de fitness. Además, en lugar de actualizar las partículas basándose en la mejor partícula global, CCFPSO se actualizó considerando la mejor partícula personal y la mejor partícula del vecindario. Esta propuesta se probó en problemas a gran escala que se asemejan a los del mundo real (CEC2008, CEC2010), donde el rendimiento de CCFPSO fue favorable en comparación con otras versiones de PSO del estado del arte, a saber, CCPSO2, SLPSO y CSO. Los resultados experimentales indican que el uso de un enfoque PSO coevolutivo cooperativo con un sistema de lógica difusa puede mejorar los resultados en problemas de alta dimensionalidad (de 100 a 1000 variables).Facultad de Informátic

    Optimization of Membership Functions for the Fuzzy Controllers of the Water Tank and Inverted Pendulum with Differents PSO Variants

    Get PDF
     In this paper the particle swarm optimization metaheuristic and two of its variants (inertia weight and constriction coefficient) are used as an optimization strategy for the design of optimal membership functions of fuzzy control systems for the water tank and inverted pendulum benchmark problems. Each variant has its own advantages in the algorithm, allowing the exploration and exploitation in different ways and this allows finding the optimal solution in a better way
    corecore