28,428 research outputs found

    Urinary CE-MS peptide marker pattern for detection of solid tumors

    Get PDF
    Urinary profiling datasets, previously acquired by capillary electrophoresis coupled to mass-spectrometry were investigated to identify a general urinary marker pattern for detection of solid tumors by targeting common systemic events associated with tumor-related inflammation. A total of 2,055 urinary profiles were analyzed, derived from a) a cancer group of patients (n = 969) with bladder, prostate, and pancreatic cancers, renal cell carcinoma, and cholangiocarcinoma and b) a control group of patients with benign diseases (n = 556), inflammatory diseases (n = 199) and healthy individuals (n = 331). Statistical analysis was conducted in a discovery set of 676 cancer cases and 744 controls. 193 peptides differing at statistically significant levels between cases and controls were selected and combined to a multi-dimensional marker pattern using support vector machine algorithms. Independent validation in a set of 635 patients (293 cancer cases and 342 controls) showed an AUC of 0.82. Inclusion of age as independent variable, significantly increased the AUC value to 0.85. Among the identified peptides were mucins, fibrinogen and collagen fragments. Further studies are planned to assess the pattern value to monitor patients for tumor recurrence. In this proof-of-concept study, a general tumor marker pattern was developed to detect cancer based on shared biomarkers, likely indicative of cancer-related features

    A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing

    Get PDF
    Evolutionary relationships among birds in Neoaves, the clade comprising the vast majority of avian diversity, have vexed systematists due to the ancient, rapid radiation of numerous lineages. We applied a new phylogenomic approach to resolve relationships in Neoaves using target enrichment (sequence capture) and high-throughput sequencing of ultraconserved elements (UCEs) in avian genomes. We collected sequence data from UCE loci for 32 members of Neoaves and one outgroup (chicken) and analyzed data sets that differed in their amount of missing data. An alignment of 1,541 loci that allowed missing data was 87% complete and resulted in a highly resolved phylogeny with broad agreement between the Bayesian and maximum-likelihood (ML) trees. Although results from the 100% complete matrix of 416 UCE loci were similar, the Bayesian and ML trees differed to a greater extent in this analysis, suggesting that increasing from 416 to 1,541 loci led to increased stability and resolution of the tree. Novel results of our study include surprisingly close relationships between phenotypically divergent bird families, such as tropicbirds (Phaethontidae) and the sunbittern (Eurypygidae) as well as between bustards (Otididae) and turacos (Musophagidae). This phylogeny bolsters support for monophyletic waterbird and landbird clades and also strongly supports controversial results from previous studies, including the sister relationship between passerines and parrots and the non-monophyly of raptorial birds in the hawk and falcon families. Although significant challenges remain to fully resolving some of the deep relationships in Neoaves, especially among lineages outside the waterbirds and landbirds, this study suggests that increased data will yield an increasingly resolved avian phylogeny.Comment: 30 pages, 1 table, 4 figures, 1 supplementary table, 3 supplementary figure

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Metaproteomics for analysis of microbial function in the environment

    Get PDF
    This report briefly describes the approach of using proteomic analyses to examine protein expression directly from environmental samples (termed metaproteomics). This approach has potential for solving one of the major challenges facing microbial ecologists, by providing insight of microbial function directly within samples
    corecore