4 research outputs found

    From AADL to Timed Abstract State Machines: A Verified Model Transformation

    Get PDF
    International audienceArchitecture Analysis and Design Language (AADL) is an architecture description language standard for embedded real-time systems widely used in the avionics and aerospace industry to model safety-critical applications. To verify and analyze the AADL models, model transformation technologies are often used to automatically extract a formal specification suitable for analysis and verification. In this process, it remains a challenge to prove that the model transformation preserves the semantics of the initial AADL model or, at least, some of the specific properties or requirements it needs to satisfy. This paper presents a machine checked semantics-preserving transformation of a subset of AADL (including periodic threads, data port communications, mode changes, and the AADL behavior annex) into Timed Abstract State Machines (TASM). The AADL standard itself lacks at present a formal semantics to make this translation validation possible. Our contribution is to bridge this gap by providing two formal semantics for the subset of AADL. The execution semantics provided by the AADL standard is formalized as Timed Transition Systems (TTS). This formalization gives a reference expression of AADL semantics which can be compared with the TASM-based translation (for verification purpose). Finally, the verified transformation is mechanized in the theorem prover Coq

    Langage intermĂ©diaire et transformations de modĂšles pour le dĂ©veloppement de systĂšmes temps-rĂ©el : retour d'expĂ©rience sur la chaĂźne de vĂ©riïŹcation formelle Fiacre

    Get PDF
    6 pagesInternational audienceWe discuss the results obtained during the development of a formal veriïŹcation toolchain for AADL based on a model driven engineering approach. Our approach is characterized by the use of the pivot language FIACRE to facilitate veriïŹcation activities and transformations between models. We quickly analyse the ïŹrst return on experience and present ongoing work started in the scope of the Quarteft project to improve the veriïŹcation chain.Nous prĂ©sentons les rĂ©sultats obtenus durant le dĂ©veloppement d’une chaĂźne de vĂ©rifi-cation formelle pour le langage d’architecture AADL basĂ© sur une approche ingĂ©nierie dirigĂ©epar les modĂšles. Notre approche se caractĂ©rise par l’utilisation du langage pivot FIACRE pourfaciliter les activitĂ©s de vĂ©rification et de transformations entre modĂšles. Nous commentonsles premiers retours d’expĂ©rience issus de la mise en oeuvre de cette chaĂźne de vĂ©rification etprĂ©sentons en conclusion les travaux en cours dans le cadre du projet Quarteft qui visent Ă l’amĂ©liore

    Traceability of Requirements and Software Architecture for Change Management

    Get PDF
    At the present day, software systems get more and more complex. The requirements of software systems change continuously and new requirements emerge frequently. New and/or modified requirements are integrated with the existing ones, and adaptations to the architecture and source code of the system are made. The process of integration of the new/modified requirements and adaptations to the software system is called change management. The size and complexity of software systems make change management costly and time consuming. To reduce the cost of changes, it is important to apply change management as early as possible in the software development cycle. Requirements traceability is considered crucial in change management for establishing and maintaining consistency between software development artifacts. It is the ability to link requirements back to stakeholders’ rationales and forward to corresponding design artifacts, code, and test cases. When changes for the requirements of the software system are proposed, the impact of these changes on other requirements, design elements and source code should be traced in order to determine parts of the software system to be changed. Determining the impact of changes on the parts of development artifacts is called change impact analysis. Change impact analysis is applicable to many development artifacts like requirements documents, detailed design, source code and test cases. Our focus is change impact analysis in requirements and software architecture. The need for change impact analysis is observed in both requirements and software architecture. When a change is introduced to a requirement, the requirements engineer needs to find out if any other requirement related to the changed requirement is impacted. After determining the impacted requirements, the software architect needs to identify the impacted architectural elements by tracing the changed requirements to software architecture. It is hard, expensive and error prone to manually trace impacted requirements and architectural elements from the changed requirements. There are tools and approaches that automate change impact analysis like IBM Rational RequisitePro and DOORS. In most of these tools, traces are just simple relations and their semantics is not considered. Due to the lack of semantics of traces in these tools, all requirements and architectural elements directly or indirectly traced from the changed requirement are candidate impacted. The requirements engineer has to inspect all these candidate impacted requirements and architectural elements to identify changes if there are any. In this thesis we address the following problems which arise in performing change impact analysis for requirements and software architecture. Explosion of impacts in requirements after a change in requirements. In practice, requirements documents are often textual artifacts with implicit structure. Most of the relations among requirements are not given explicitly. There is a lack of precise definition of relations among requirements in most tools and approaches. Due to the lack of semantics of requirements relations, change impact analysis may produce high number of false positive and false negative impacted requirements. A requirements engineer may have to analyze all requirements in the requirements document for a single change. This may result in neglecting the actual impact of a change. Manual, expensive and error prone trace establishment. Considerable research has been devoted to relating requirements and design artifacts with source code. Less attention has been paid to relating Requirements (R) with Architecture (A) by using well-defined semantics of traces. Designing architecture based on requirements is a problem solving process that relies on human experience and creativity, and is mainly manual. The software architect may need to manually assign traces between R&A. Manual trace assignment is time-consuming, expensive and error prone. The assigned traces might be incomplete and invalid. Explosion of impacts in software architecture after a change in requirements. Due to the lack of semantics of traces between R&A, change impact analysis may produce high number of false positive and false negative impacted architectural elements. A software architect may have to analyze all architectural elements in the architecture for a single requirements change. In this thesis we propose an approach that reduces the explosion of impacts in R&A. The approach employs semantic information of traces and is supported by tools. We consider that every relation between software development artifacts or between elements in these artifacts can play the role of a trace for a certain traceability purpose like change impact analysis. We choose Model Driven Engineering (MDE) as a solution platform for our approach. MDE provides a uniform treatment of software artifacts (e.g. requirements documents, software design and test documents) as models. It also enables using different formalisms to reason about development artifacts described as models. To give an explicit structure to requirements documents and treat requirements, architecture and traces in a uniform way, we use metamodels and models with formally defined semantics. The thesis provides the following contributions: A modeling language for definition of requirements models with formal semantics. The language is defined according to the MDE principles by defining a metamodel. It is based on a survey about the most commonly found requirements types and relation types. With this language, the requirements engineer can explicitly specify the requirements and the relations among them. The semantics of these entities is given in First Order Logic (FOL) and allows two activities. First, new relations among requirements can be inferred from the initial set of relations. Second, requirements models can be automatically checked for consistency of the relations. Tool for Requirements Inferencing and Consistency Checking (TRIC) is developed to support both activities. The defined semantics is used in a technique for change impact analysis in requirements models. A change impact analysis technique for requirements using semantics of requirements relations and requirements change types. The technique aims at solving the problem of explosion of impacts in requirements when semantics of requirements relations is missing. The technique uses formal semantics of requirements relations and requirements change types. A classification of requirements changes based on the structure of a textual requirement is given and formalized. The semantics of requirements change types is based on FOL. We support three activities for impact analysis. First, the requirements engineer proposes changes according to the change classification before implementing the actual changes. Second, the requirements engineer indentifies the propagation of the changes to related requirements. The change alternatives in the propagation are determined based on the semantics of change types and requirements relations. Third, possible contradicting changes are identified. We extend TRIC with a support for these activities. The tool automatically determines the change propagation paths, checks the consistency of the changes, and suggests alternatives for implementing the change. A technique that provides trace establishment between R&A by using architecture verification and semantics of traces. It is hard, expensive and error prone to manually establish traces between R&A. We present an approach that provides trace establishment by using architecture verification together with semantics of requirements relations and traces. We use a trace metamodel with commonly used trace types. The semantics of traces is formalized in FOL. Software architectures are expressed in the Architecture Analysis and Design Language (AADL). AADL is provided with a formal semantics expressed in Maude. The Maude tool set allows simulation and verification of architectures. The first way to establish traces is to use architecture verification techniques. A given requirement is reformulated as a property in terms of the architecture. The architecture is executed and a state space is produced. This execution simulates the behavior of the system on the architectural level. The property derived from the requirement is checked by the Maude model checker. Traces are generated between the requirement and the architectural components used in the verification of the property. The second way to establish traces is to use the requirements relations together with the semantics of traces. Requirements relations are reflected in the connections among the traced architectural elements based on the semantics of traces. Therefore, new traces are inferred from existing traces by using requirements relations. We use semantics of requirements relations and traces to both generate/validate traces and generate/validate requirements relations. There is a tool support for our approach. The tool provides the following: (1) generation/validation of traces by using requirements relations and/or verification of architecture, (2) generation/validation of requirements relations by using traces. A change impact analysis technique for software architecture using architecture verification and semantics of traces between R&A. The software architect needs to identify the impacted architectural elements after requirements change. We present a change impact analysis technique for software architecture using architecture verification and semantics of traces. The technique is semi-automatic and requires participation of the software architect. Our technique has two parts. The first part is to identify the architectural elements that implement the system properties to which proposed requirements changes are introduced. By having the formal semantics of requirements relations and traces, we identify which parts of software architecture are impacted by a proposed change in requirements. We have extended TRIC for determining candidate impacted architectural elements. The second part of our technique is to propose possible changes for software architecture when the software architecture does not satisfy the new and/or changed requirements. The technique is based on architecture verification. The output of verification is a counter example if the requirements are not satisfied. The counter example is used with a classification of architectural changes in order to propose changes in the software architecture. These changes produce a new version of the architecture that possibly satisfies the new or the changed requirements

    A Comparative Study of FIACRE and TASM to Define AADL Real Time Concepts

    No full text
    corecore