51 research outputs found

    A Comparative Study between Two Three-DOF Parallel Kinematic Machines using Kinetostatic Criteria and Interval Analysis

    Get PDF
    International audienceThis paper addresses the workspace analysis of two 3-DOF translational parallel mechanisms designed for machining applications. The two machines features three fixed linear joints. The joint axes of the first machine are orthogonal whereas these of the second are parallel. In both cases, the mobile platform moves in the Cartesian xyzx-y-z space with fixed orientation. The workspace analysis is conducted on the basis of prescribed kinetostatic performances. Interval analysis based methods are used to compute the dextrous workspace and the largest cube enclosed in this workspace

    An Interval Analysis Based Study for the Design and the Comparison of 3-DOF Parallel Kinematic Machines

    Get PDF
    International audienceThis paper addresses an interval analysis based study that is applied to the design and the comparison of 3-DOF parallel kinematic machines. Two design criteria are used, (i) a regular workspace shape and, (ii) a kinetostatic performance index that needs to be as homogeneous as possible throughout the workspace. The interval analysis based method takes these two criteria into account: on the basis of prescribed kinetostatic performances, the workspace is analysed to find out the largest regular dextrous workspace enclosed in the Cartesian workspace. An algorithm describing this method is introduced. Two 3-DOF translational parallel mechanisms designed for machining applications are compared using this method. The first machine features three fixed linear joints which are mounted orthogonally and the second one features three linear joints which are mounted in parallel. In both cases, the mobile platform moves in the Cartesian x-y-z space with fixed orientation

    Parametric stiffness analysis of the Orthoglide

    Get PDF
    This paper presents a parametric stiffness analysis of the Orthoglide. A compliant modeling and a symbolic expression of the stiffness matrix are conducted. This allows a simple systematic analysis of the influence of the geometric design parameters and to quickly identify the critical link parameters. Our symbolic model is used to display the stiffest areas of the workspace for a specific machining task. Our approach can be applied to any parallel manipulator for which stiffness is a critical issue

    Technology-Oriented Optimization of the Secondary Design Parameters of Robots for High-Speed Machining Applications

    Get PDF
    International audienceIn this paper, a new methodology for the optimal design of the secondary geometric parameters (shape of links, size of the platform, etc.) of parallel kinematic machine tools is proposed. This approach aims at minimizing the total mass of the robot under position accuracy constraints. This methodology is applied to two translational parallel robots with three degrees-of-freedom (DOF): the Y-STAR and the UraneSX. The proposed approach is able to speed up the design process and to help the designer to find more quickly a set of design parameters

    WORKSPACE ANALYSIS AND OPTIMIZATION OF THE PARALLEL ROBOTS BASED ON COMPUTER-AIDED DESIGN APPROACH

    Get PDF
    This paper provides workspace determination and analysis based on the graphical technique of both spatial and planar parallel manipulators. The computation and analysis of workspaces will be carried out using the parameterization and three-dimensional representation of the workspace. This technique is implemented in CAD (Computer Aided Design) Software CATIA workbenches. In order to determine the workspace of the proposed manipulators, the reachable region by each kinematic chain is created as a volume/area; afterwards, the full reachable workspace is obtained by the application of a Boolean intersection function on the previously generated volumes/areas. Finally, the relations between the total workspace and the design parameters are simulated, and the Product Engineering Optimizer workbench is used to optimize the design variables in order to obtain a maximized workspace volume. Simulated annealing (SA) and Conjugate Gradient (CG) are considered in this study as optimization tools

    Paralleelmehhanismide kinetostaatiliste jõudlusindeksite uuring ning võrdlus

    Get PDF
    Nii kaua, kui on kasutusel olnud robotid, on käinud teadusuuringud nende kasutamiseks ning töö optimeerimiseks meie igapäevases elus. Samal ajal, kui meie teadmised robotite teemal on suuresti arenenud, on kasvanud ka vastavate struktuuride keerukus. Seega on arendatud mitmeid meetodeid ja indekseid, aitamaks disaneritel ning inseneridel välja selgitada parimad seadmed vastavate ülesannete lahendamiseks. Lisaks on huvi paralleelmehhanismide suunas viimaste aastate jooksul märgatavalt kasvanud. Peamiseks põhjuseks on paljudes valdkondades märgatavalt parem sooritusvõime võrreldes seriaalmanipulaatoritega. Ometi pole arendatud veel ühtegi globaalset jõudlusindeksit, mis võimaldaks täpsuse perspektiivis paralleelmanipulaatorite omavahelise võrdluse. Käesoleva lõputöö fookuseks on kintestaatilise jõuldusindeksi arendustööst ülevaate pakkumine. Uuritav indeks peab robustselt suutma hinnata läbi vastava indeksi paralleelmanipulaatorite täpsust.For as long as we have used robots there has also been ongoing research to allow us to use and improve efficiency of automation in our daily lives. As our knowledge about robots has largely improved, so has the complexity of their structures. Thus, various methods and indices have been developed to help designers and engineers determine the best manipulator for a specific task. In addition, the interest towards parallel manipulators has seen growth in the last couple of years due to significantly better performance in various areas in comparison to serial mechanisms. However, no global performance index to evaluate accuracy and allow comparison in that perspective between parallel mechanisms has been developed. This thesis focuses on giving an overview on the developments towards finding a robust kinematic sensitivity index to measure accuracy performance of parallel manipulators
    corecore