2,209 research outputs found

    Combined optimization of feature selection and algorithm parameters in machine learning of language

    Get PDF
    Comparative machine learning experiments have become an important methodology in empirical approaches to natural language processing (i) to investigate which machine learning algorithms have the 'right bias' to solve specific natural language processing tasks, and (ii) to investigate which sources of information add to accuracy in a learning approach. Using automatic word sense disambiguation as an example task, we show that with the methodology currently used in comparative machine learning experiments, the results may often not be reliable because of the role of and interaction between feature selection and algorithm parameter optimization. We propose genetic algorithms as a practical approach to achieve both higher accuracy within a single approach, and more reliable comparisons

    MAG: A Multilingual, Knowledge-base Agnostic and Deterministic Entity Linking Approach

    Full text link
    Entity linking has recently been the subject of a significant body of research. Currently, the best performing approaches rely on trained mono-lingual models. Porting these approaches to other languages is consequently a difficult endeavor as it requires corresponding training data and retraining of the models. We address this drawback by presenting a novel multilingual, knowledge-based agnostic and deterministic approach to entity linking, dubbed MAG. MAG is based on a combination of context-based retrieval on structured knowledge bases and graph algorithms. We evaluate MAG on 23 data sets and in 7 languages. Our results show that the best approach trained on English datasets (PBOH) achieves a micro F-measure that is up to 4 times worse on datasets in other languages. MAG, on the other hand, achieves state-of-the-art performance on English datasets and reaches a micro F-measure that is up to 0.6 higher than that of PBOH on non-English languages.Comment: Accepted in K-CAP 2017: Knowledge Capture Conferenc

    Integrating Weakly Supervised Word Sense Disambiguation into Neural Machine Translation

    Full text link
    This paper demonstrates that word sense disambiguation (WSD) can improve neural machine translation (NMT) by widening the source context considered when modeling the senses of potentially ambiguous words. We first introduce three adaptive clustering algorithms for WSD, based on k-means, Chinese restaurant processes, and random walks, which are then applied to large word contexts represented in a low-rank space and evaluated on SemEval shared-task data. We then learn word vectors jointly with sense vectors defined by our best WSD method, within a state-of-the-art NMT system. We show that the concatenation of these vectors, and the use of a sense selection mechanism based on the weighted average of sense vectors, outperforms several baselines including sense-aware ones. This is demonstrated by translation on five language pairs. The improvements are above one BLEU point over strong NMT baselines, +4% accuracy over all ambiguous nouns and verbs, or +20% when scored manually over several challenging words.Comment: To appear in TAC

    Disambiguation strategies for cross-language information retrieval

    Get PDF
    This paper gives an overview of tools and methods for Cross-Language Information Retrieval (CLIR) that are developed within the Twenty-One project. The tools and methods are evaluated with the TREC CLIR task document collection using Dutch queries on the English document base. The main issue addressed here is an evaluation of two approaches to disambiguation. The underlying question is whether a lot of effort should be put in finding the correct translation for each query term before searching, or whether searching with more than one possible translation leads to better results? The experimental study suggests that the quality of search methods is more important than the quality of disambiguation methods. Good retrieval methods are able to disambiguate translated queries implicitly during searching

    Thematic Annotation: extracting concepts out of documents

    Get PDF
    Contrarily to standard approaches to topic annotation, the technique used in this work does not centrally rely on some sort of -- possibly statistical -- keyword extraction. In fact, the proposed annotation algorithm uses a large scale semantic database -- the EDR Electronic Dictionary -- that provides a concept hierarchy based on hyponym and hypernym relations. This concept hierarchy is used to generate a synthetic representation of the document by aggregating the words present in topically homogeneous document segments into a set of concepts best preserving the document's content. This new extraction technique uses an unexplored approach to topic selection. Instead of using semantic similarity measures based on a semantic resource, the later is processed to extract the part of the conceptual hierarchy relevant to the document content. Then this conceptual hierarchy is searched to extract the most relevant set of concepts to represent the topics discussed in the document. Notice that this algorithm is able to extract generic concepts that are not directly present in the document.Comment: Technical report EPFL/LIA. 81 pages, 16 figure

    Seeing the wood for the trees: data-oriented translation

    Get PDF
    Data-Oriented Translation (DOT), which is based on Data-Oriented Parsing (DOP), comprises an experience-based approach to translation, where new translations are derived with reference to grammatical analyses of previous translations. Previous DOT experiments [Poutsma, 1998, Poutsma, 2000a, Poutsma, 2000b] were small in scale because important advances in DOP technology were not incorporated into the translation model. Despite this, related work [Way, 1999, Way, 2003a, Way, 2003b] reports that DOT models are viable in that solutions to ‘hard’ translation cases are readily available. However, it has not been shown to date that DOT models scale to larger datasets. In this work, we describe a novel DOT system, inspired by recent advances in DOP parsing technology. We test our system on larger, more complex corpora than have been used heretofore, and present both automatic and human evaluations which show that high quality translations can be achieved at reasonable speeds

    Gujarati Word Sense Disambiguation using Genetic Algorithm

    Get PDF
    Genetic algorithms (GAs) have widely been investigated to solve hard optimization problems, including the word sense disambiguation (WSD). This problem asks to determine which sense of a polysemous word is used in a given context. Several approaches have been investigated for WSD in English, French, German and some Indo-Aryan languages like Hindi, Marathi, Malayalam, etc. however, research on WSD in Guajarati Language is relatively limited. In this paper, an approach for Guajarati WSD using Genetic algorithm has been proposed which uses Knowledge based approach where Indo-Aryan WordNet for Guajarati is used as lexical database for WSD

    Large-Scale information extraction from textual definitions through deep syntactic and semantic analysis

    Get PDF
    We present DEFIE, an approach to large-scale Information Extraction (IE) based on a syntactic-semantic analysis of textual definitions. Given a large corpus of definitions we leverage syntactic dependencies to reduce data sparsity, then disambiguate the arguments and content words of the relation strings, and finally exploit the resulting information to organize the acquired relations hierarchically. The output of DEFIE is a high-quality knowledge base consisting of several million automatically acquired semantic relations
    • 

    corecore