6,628 research outputs found

    A Comparative Analysis of Load Balancing Algorithms Applied to a Weather Forecast Model

    Full text link
    Among the many reasons for load imbalance in weather forecasting models, the dynamic imbalance caused by lo-calized variations on the state of the atmosphere is the hard-est one to handle. As an example, active thunderstorms may substantially increase load at a certain timestep with re-spect to previous timesteps in an unpredictable manner – after all, tracking storms is one of the reasons for running a weather forecasting model. In this paper, we present a com-parative analysis of different load balancing algorithms to deal with this kind of load imbalance. We analyze the im-pact of these strategies on computation and communication and the effects caused by the frequency at which the load balancer is invoked on execution time. This is done with-out any code modification, employing the concept of proces-sor virtualization, which basically means that the domain is over-decomposed and the unit of rebalance is a sub-domain. With this approach, we were able to reduce the execution time of a full, real-world weather model. 1

    Supporting high penetrations of renewable generation via implementation of real-time electricity pricing and demand response

    Get PDF
    The rollout of smart meters raises the prospect that domestic customer electrical demand can be responsive to changes in supply capacity. Such responsive demand will become increasingly relevant in electrical power systems, as the proportion of weather-dependent renewable generation increases, due to the difficulty and expense of storing electrical energy. One method of providing response is to allow direct control of customer devices by network operators, as in the UK 'Economy 7' and 'White Meter' schemes used to control domestic electrical heating. However, such direct control is much less acceptable for loads such as washing machines, lighting and televisions. This study instead examines the use of real-time pricing of electricity in the domestic sector. This allows customers to be flexible but, importantly, to retain overall control. A simulation methodology for highlighting the potential effects of, and possible problems with, a national implementation of real-time pricing in the UK domestic electricity market is presented. This is done by disaggregating domestic load profiles and then simulating price-based elastic and load-shifting responses. Analysis of a future UK scenario with 15 GW wind penetration shows that during low-wind events, UK peak demand could be reduced by 8-11 GW. This could remove the requirement for 8-11 GW of standby generation with a capital cost of ÂŁ2.6 to ÂŁ3.6 billion. Recommended further work is the investigation of improved demand-forecasting and the price-setting strategies. This is a fine balance between giving customers access to plentiful, cheap energy when it is available, but increasing prices just enough to reduce demand to meet the supply capacity when this capacity is limited

    Multi-time-horizon Solar Forecasting Using Recurrent Neural Network

    Full text link
    The non-stationarity characteristic of the solar power renders traditional point forecasting methods to be less useful due to large prediction errors. This results in increased uncertainties in the grid operation, thereby negatively affecting the reliability and increased cost of operation. This research paper proposes a unified architecture for multi-time-horizon predictions for short and long-term solar forecasting using Recurrent Neural Networks (RNN). The paper describes an end-to-end pipeline to implement the architecture along with the methods to test and validate the performance of the prediction model. The results demonstrate that the proposed method based on the unified architecture is effective for multi-horizon solar forecasting and achieves a lower root-mean-squared prediction error compared to the previous best-performing methods which use one model for each time-horizon. The proposed method enables multi-horizon forecasts with real-time inputs, which have a high potential for practical applications in the evolving smart grid.Comment: Accepted at: IEEE Energy Conversion Congress and Exposition (ECCE 2018), 7 pages, 5 figures, code available: sakshi-mishra.github.i

    An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting Using Deep Learning

    Full text link
    For short-term solar irradiance forecasting, the traditional point forecasting methods are rendered less useful due to the non-stationary characteristic of solar power. The amount of operating reserves required to maintain reliable operation of the electric grid rises due to the variability of solar energy. The higher the uncertainty in the generation, the greater the operating-reserve requirements, which translates to an increased cost of operation. In this research work, we propose a unified architecture for multi-time-scale predictions for intra-day solar irradiance forecasting using recurrent neural networks (RNN) and long-short-term memory networks (LSTMs). This paper also lays out a framework for extending this modeling approach to intra-hour forecasting horizons thus, making it a multi-time-horizon forecasting approach, capable of predicting intra-hour as well as intra-day solar irradiance. We develop an end-to-end pipeline to effectuate the proposed architecture. The performance of the prediction model is tested and validated by the methodical implementation. The robustness of the approach is demonstrated with case studies conducted for geographically scattered sites across the United States. The predictions demonstrate that our proposed unified architecture-based approach is effective for multi-time-scale solar forecasts and achieves a lower root-mean-square prediction error when benchmarked against the best-performing methods documented in the literature that use separate models for each time-scale during the day. Our proposed method results in a 71.5% reduction in the mean RMSE averaged across all the test sites compared to the ML-based best-performing method reported in the literature. Additionally, the proposed method enables multi-time-horizon forecasts with real-time inputs, which have a significant potential for practical industry applications in the evolving grid.Comment: 19 pages, 12 figures, 3 tables, under review for journal submissio

    Smart Microgrids: Overview and Outlook

    Full text link
    The idea of changing our energy system from a hierarchical design into a set of nearly independent microgrids becomes feasible with the availability of small renewable energy generators. The smart microgrid concept comes with several challenges in research and engineering targeting load balancing, pricing, consumer integration and home automation. In this paper we first provide an overview on these challenges and present approaches that target the problems identified. While there exist promising algorithms for the particular field, we see a missing integration which specifically targets smart microgrids. Therefore, we propose an architecture that integrates the presented approaches and defines interfaces between the identified components such as generators, storage, smart and \dq{dumb} devices.Comment: presented at the GI Informatik 2012, Braunschweig Germany, Smart Grid Worksho

    A new approach to seasonal energy consumption forecasting using temporal convolutional networks

    Get PDF
    There has been a significant increase in the attention paid to resource management in smart grids, and several energy forecasting models have been published in the literature. It is well known that energy forecasting plays a crucial role in several applications in smart grids, including demand-side management, optimum dispatch, and load shedding. A significant challenge in smart grid models is managing forecasts efficiently while ensuring the slightest feasible prediction error. A type of artificial neural networks such as recurrent neural networks, are frequently used to forecast time series data. However, due to certain limitations like vanishing gradients and lack of memory retention of recurrent neural networks, sequential data should be modeled using convolutional networks. The reason is that they have strong capabilities to solve complex problems better than recurrent neural networks. In this research, a temporal convolutional network is proposed to handle seasonal short-term energy forecasting. The proposed temporal convolutional network computes outputs in parallel, reducing the computation time compared to the recurrent neural networks. Further performance comparison with the traditional long short-term memory in terms of MAD and sMAPE has proved that the proposed model has outperformed the recurrent neural network

    A Comprehensive Learning-Based Model for Power Load Forecasting in Smart Grid

    Get PDF
    In the big data era, learning-based techniques have attracted more and more attention in many industry areas such as smart grid, intelligent transportation. The power load forecasting is one of the most critical issues in data analysis of smart grid. However, learning-based methods have not been widely used due to the poor data quality and computational capacity. In this paper, we propose a comprehensive learning-based model to forecast heavy and over load (HOL) accidents according to the data from various information systems. At first, we present a combined random under- and over-sampling technique for imbalanced electric data, and choose an optimal sampling rate through several experiments. Then, we reduce the attributes that have significant impact on the power load by using learning-based methods. Finally, we provide an algorithm based on the random forest method to prevent the over-fitting problem. We evaluate the proposed model and algorithms with the real-world data provided by China Grid. The experimental results show that our model works efficiently and achieves low error rates
    • …
    corecore