519 research outputs found

    A Comparative Analysis of Common Threats, Vulnerabilities, Attacks and Countermeasures Within Smart Card and Wireless Sensor Network Node Technologies

    Get PDF
    O objetivo deste trabalho foi caracterizar a concentração da cadeia de serviços no município de Campos do Jordão, na formação de cadeia produtiva do turismo. A identificação do tipo de concentração permitiu posicionar essa cadeia produtiva, na contribuição do crescimento local, no desenvolvimento econômico e social, para a sugestão da implantação de um pólo de desenvolvimento em sustentabilidade. A formação da cadeia de serviço foi baseada na revisão bibliográfica, por meio dos modelos de desenvolvimento econômico e social. Os procedimentos metodológicos adotados incluem pesquisa qualitativa e quantitativa e quanto aos seus objetivos foi utilizada a metodologia exploratória, descritiva e explicativa. Com referência aos meios de investigação, utilizou-se a pesquisa documental e bibliográfica. A coleta de dados ocorreu nas entidades de classe da cidade, na associação da rede hoteleira e nos órgãos públicos locais. Com o resultado obtido, após definido os atores institucionais da concentração da cadeia de serviço e identificado o tipo da mesma na concentração da cadeia de serviço hoteleira como parte integrante da cadeia produtiva do turismo, espera-se uma mudança na maneira de pensar sobre a economia local mediante a proposta de um “Pólo de Desenvolvimento Sustentável”, destacando-se a importância da formação desta aglomeração no desenvolvimento local

    Intelligent Sensors Security

    Get PDF
    The paper is focused on the security issues of sensors provided with processors and software and used for high-risk applications. Common IT related threats may cause serious consequences for sensor system users. To improve their robustness, sensor systems should be developed in a restricted way that would provide them with assurance. One assurance creation methodology is Common Criteria (ISO/IEC 15408) used for IT products and systems. The paper begins with a primer on the Common Criteria, and then a general security model of the intelligent sensor as an IT product is discussed. The paper presents how the security problem of the intelligent sensor is defined and solved. The contribution of the paper is to provide Common Criteria (CC) related security design patterns and to improve the effectiveness of the sensor development process

    The Applications of the Internet of things in the Medical Field

    Get PDF
    The Internet of Things (IoT) paradigm promises to make “things” include a more generic set of entities such as smart devices, sensors, human beings, and any other IoT objects to be accessible at anytime and anywhere. IoT varies widely in its applications, and one of its most beneficial uses is in the medical field. However, the large attack surface and vulnerabilities of IoT systems needs to be secured and protected. Security is a requirement for IoT systems in the medical field where the Health Insurance Portability and Accountability Act (HIPAA) applies. This work investigates various applications of IoT in healthcare and focuses on the security aspects of the two internet of medical things (IoMT) devices: the LifeWatch Mobile Cardiac Telemetry 3 Lead (MCT3L), and the remote patient monitoring system of the telehealth provider Vivify Health, as well as their implementations

    A survey of IoT security based on a layered architecture of sensing and data analysis

    Get PDF
    The Internet of Things (IoT) is leading today’s digital transformation. Relying on a combination of technologies, protocols, and devices such as wireless sensors and newly developed wearable and implanted sensors, IoT is changing every aspect of daily life, especially recent applications in digital healthcare. IoT incorporates various kinds of hardware, communication protocols, and services. This IoT diversity can be viewed as a double-edged sword that provides comfort to users but can lead also to a large number of security threats and attacks. In this survey paper, a new compacted and optimized architecture for IoT is proposed based on five layers. Likewise, we propose a new classification of security threats and attacks based on new IoT architecture. The IoT architecture involves a physical perception layer, a network and protocol layer, a transport layer, an application layer, and a data and cloud services layer. First, the physical sensing layer incorporates the basic hardware used by IoT. Second, we highlight the various network and protocol technologies employed by IoT, and review the security threats and solutions. Transport protocols are exhibited and the security threats against them are discussed while providing common solutions. Then, the application layer involves application protocols and lightweight encryption algorithms for IoT. Finally, in the data and cloud services layer, the main important security features of IoT cloud platforms are addressed, involving confidentiality, integrity, authorization, authentication, and encryption protocols. The paper is concluded by presenting the open research issues and future directions towards securing IoT, including the lack of standardized lightweight encryption algorithms, the use of machine-learning algorithms to enhance security and the related challenges, the use of Blockchain to address security challenges in IoT, and the implications of IoT deployment in 5G and beyond

    Internet of Things for system integrity: a comprehensive survey on security, attacks and countermeasures for industrial applications

    Get PDF
    The growth of the Internet of Things (IoT) offers numerous opportunities for developing industrial applications such as smart grids, smart cities, smart manufacturers, etc. By utilising these opportunities, businesses engage in creating the Industrial Internet of Things (IIoT). IoT is vulnerable to hacks and, therefore, requires various techniques to achieve the level of security required. Furthermore, the wider implementation of IIoT causes an even greater security risk than its benefits. To provide a roadmap for researchers, this survey discusses the integrity of industrial IoT systems and highlights the existing security approaches for the most significant industrial applications. This paper mainly classifies the attacks and possible security solutions regarding IoT layers architecture. Consequently, each attack is connected to one or more layers of the architecture accompanied by a literature analysis on the various IoT security countermeasures. It further provides a critical analysis of the existing IoT/IIoT solutions based on different security mechanisms, including communications protocols, networking, cryptography and intrusion detection systems. Additionally, there is a discussion of the emerging tools and simulations used for testing and evaluating security mechanisms in IoT applications. Last, this survey outlines several other relevant research issues and challenges for IoT/IIoT security

    Mitigating Insider Threat Risks in Cyber-physical Manufacturing Systems

    Get PDF
    Cyber-Physical Manufacturing System (CPMS)—a next generation manufacturing system—seamlessly integrates digital and physical domains via the internet or computer networks. It will enable drastic improvements in production flexibility, capacity, and cost-efficiency. However, enlarged connectivity and accessibility from the integration can yield unintended security concerns. The major concern arises from cyber-physical attacks, which can cause damages to the physical domain while attacks originate in the digital domain. Especially, such attacks can be performed by insiders easily but in a more critical manner: Insider Threats. Insiders can be defined as anyone who is or has been affiliated with a system. Insiders have knowledge and access authentications of the system\u27s properties, therefore, can perform more serious attacks than outsiders. Furthermore, it is hard to detect or prevent insider threats in CPMS in a timely manner, since they can easily bypass or incapacitate general defensive mechanisms of the system by exploiting their physical access, security clearance, and knowledge of the system vulnerabilities. This thesis seeks to address the above issues by developing an insider threat tolerant CPMS, enhanced by a service-oriented blockchain augmentation and conducting experiments & analysis. The aim of the research is to identify insider threat vulnerabilities and improve the security of CPMS. Blockchain\u27s unique distributed system approach is adopted to mitigate the insider threat risks in CPMS. However, the blockchain limits the system performance due to the arbitrary block generation time and block occurrence frequency. The service-oriented blockchain augmentation is providing physical and digital entities with the blockchain communication protocol through a service layer. In this way, multiple entities are integrated by the service layer, which enables the services with less arbitrary delays while retaining their strong security from the blockchain. Also, multiple independent service applications in the service layer can ensure the flexibility and productivity of the CPMS. To study the effectiveness of the blockchain augmentation against insider threats, two example models of the proposed system have been developed: Layer Image Auditing System (LIAS) and Secure Programmable Logic Controller (SPLC). Also, four case studies are designed and presented based on the two models and evaluated by an Insider Attack Scenario Assessment Framework. The framework investigates the system\u27s security vulnerabilities and practically evaluates the insider attack scenarios. The research contributes to the understanding of insider threats and blockchain implementations in CPMS by addressing key issues that have been identified in the literature. The issues are addressed by EBIS (Establish, Build, Identify, Simulation) validation process with numerical experiments and the results, which are in turn used towards mitigating insider threat risks in CPMS

    A holistic review of cybersecurity and reliability perspectives in smart airports

    Get PDF
    Advances in the Internet of Things (IoT) and aviation sector have resulted in the emergence of smart airports. Services and systems powered by the IoT enable smart airports to have enhanced robustness, efficiency and control, governed by real-time monitoring and analytics. Smart sensors control the environmental conditions inside the airport, automate passenger-related actions and support airport security. However, these augmentations and automation introduce security threats to network systems of smart airports. Cyber-attackers demonstrated the susceptibility of IoT systems and networks to Advanced Persistent Threats (APT), due to hardware constraints, software flaws or IoT misconfigurations. With the increasing complexity of attacks, it is imperative to safeguard IoT networks of smart airports and ensure reliability of services, as cyber-attacks can have tremendous consequences such as disrupting networks, cancelling travel, or stealing sensitive information. There is a need to adopt and develop new Artificial Intelligence (AI)-enabled cyber-defence techniques for smart airports, which will address the challenges brought about by the incorporation of IoT systems to the airport business processes, and the constantly evolving nature of contemporary cyber-attacks. In this study, we present a holistic review of existing smart airport applications and services enabled by IoT sensors and systems. Additionally, we investigate several types of cyber defence tools including AI and data mining techniques, and analyse their strengths and weaknesses in the context of smart airports. Furthermore, we provide a classification of smart airport sub-systems based on their purpose and criticality and address cyber threats that can affect the security of smart airport\u27s networks

    Context-Aware Privacy Protection Framework for Wireless Sensor Networks

    Get PDF
    corecore