22 research outputs found

    Unfolding and Shrinking Neural Machine Translation Ensembles

    Full text link
    Ensembling is a well-known technique in neural machine translation (NMT) to improve system performance. Instead of a single neural net, multiple neural nets with the same topology are trained separately, and the decoder generates predictions by averaging over the individual models. Ensembling often improves the quality of the generated translations drastically. However, it is not suitable for production systems because it is cumbersome and slow. This work aims to reduce the runtime to be on par with a single system without compromising the translation quality. First, we show that the ensemble can be unfolded into a single large neural network which imitates the output of the ensemble system. We show that unfolding can already improve the runtime in practice since more work can be done on the GPU. We proceed by describing a set of techniques to shrink the unfolded network by reducing the dimensionality of layers. On Japanese-English we report that the resulting network has the size and decoding speed of a single NMT network but performs on the level of a 3-ensemble system.Comment: Accepted at EMNLP 201

    Findings of the 2019 Conference on Machine Translation (WMT19)

    Get PDF
    This paper presents the results of the premier shared task organized alongside the Conference on Machine Translation (WMT) 2019. Participants were asked to build machine translation systems for any of 18 language pairs, to be evaluated on a test set of news stories. The main metric for this task is human judgment of translation quality. The task was also opened up to additional test suites to probe specific aspects of translation

    Grammatical Error Correction: A Survey of the State of the Art

    Full text link
    Grammatical Error Correction (GEC) is the task of automatically detecting and correcting errors in text. The task not only includes the correction of grammatical errors, such as missing prepositions and mismatched subject-verb agreement, but also orthographic and semantic errors, such as misspellings and word choice errors respectively. The field has seen significant progress in the last decade, motivated in part by a series of five shared tasks, which drove the development of rule-based methods, statistical classifiers, statistical machine translation, and finally neural machine translation systems which represent the current dominant state of the art. In this survey paper, we condense the field into a single article and first outline some of the linguistic challenges of the task, introduce the most popular datasets that are available to researchers (for both English and other languages), and summarise the various methods and techniques that have been developed with a particular focus on artificial error generation. We next describe the many different approaches to evaluation as well as concerns surrounding metric reliability, especially in relation to subjective human judgements, before concluding with an overview of recent progress and suggestions for future work and remaining challenges. We hope that this survey will serve as comprehensive resource for researchers who are new to the field or who want to be kept apprised of recent developments

    Multi-source Transformer for Automatic Post-Editing

    Get PDF
    Recent approaches to the Automatic Post-editing (APE) of Machine Translation (MT) have shown that best results are obtained by neural multi-source models that correct the raw MT output by also considering information from the corresponding source sentence. In this paper, we pursue this objective by exploiting, for the first time in APE, the Transformer architecture. Our approach is much simpler than the best current solutions, which are based on ensembling multiple models and adding a final hypothesis re-ranking step. We evaluate our Transformer-based system on the English-German data released for the WMT 2017 APE shared task, achieving results that outperform the state of the art with a simpler architecture suitable for industrial applications.Gli approcci più efficaci alla correzione automatica di errori nella traduzione automatica (Automatic Postediting – APE) attualmente si basano su modelli neurali multi-source, capaci cioè di sfruttare informazione proveniente sia dalla frase da correggere che dalla frase nella lingua sorgente. Seguendo tale approccio, in questo articolo applichiamo per la prima volta l’architettura Transformer, ottenendo un sistema notevolmente meno complesso rispetto a quelli proposti fino ad ora (i migliori dei quali, basati sulla combinazione di più modelli). Attraverso esperimenti su dati Inglese-Tedesco rilasciati per l’APE task a WMT 2017, dimostriamo che, oltre a tale guadagno in termini di semplicità, il metodo proposto ottiene risultati superiori allo stato dell’arte
    corecore