156 research outputs found

    Interval simulation: raising the level of abstraction in architectural simulation

    Get PDF
    Detailed architectural simulators suffer from a long development cycle and extremely long evaluation times. This longstanding problem is further exacerbated in the multi-core processor era. Existing solutions address the simulation problem by either sampling the simulated instruction stream or by mapping the simulation models on FPGAs; these approaches achieve substantial simulation speedups while simulating performance in a cycle-accurate manner This paper proposes interval simulation which rakes a completely different approach: interval simulation raises the level of abstraction and replaces the core-level cycle-accurate simulation model by a mechanistic analytical model. The analytical model estimates core-level performance by analyzing intervals, or the timing between two miss events (branch mispredictions and TLB/cache misses); the miss events are determined through simulation of the memory hierarchy, cache coherence protocol, interconnection network and branch predictor By raising the level of abstraction, interval simulation reduces both development time and evaluation time. Our experimental results using the SPEC CPU2000 and PARSEC benchmark suites and the MS multi-core simulator show good accuracy up to eight cores (average error of 4.6% and max error of 11% for the multi-threaded full-system workloads), while achieving a one order of magnitude simulation speedup compared to cycle-accurate simulation. Moreover interval simulation is easy to implement: our implementation of the mechanistic analytical model incurs only one thousand lines of code. Its high accuracy, fast simulation speed and ease-of-use make interval simulation a useful complement to the architect's toolbox for exploring system-level and high-level micro-architecture trade-offs

    Golden-Finger and Back-Door: Two HW/SW Mechanisms for Accelerating Multicore Computer Systems

    Get PDF
    Continuously requirements of high-performance computing make the computer system adopt more processorswithin a system to improve the parallelism and throughput. Although multiple processing cores are implemented ina computer system, the complicated hardware communication mechanism between processors will decrease theperformance of overall system. Besides, the unsuitable process scheduling mechanism of conventional operatingsystem can not fully utilize the computation power of additional processors. Accordingly, this paper provides twomechanisms to overcome the above challenges by using hardware and software mechanisms, respectively. Insoftware aspect, we propose a tool, called Golden-Finger, to dynamically adjust the scheduling policy of the processscheduler in Linux. This software mechanism can improve the performance of the specified process by occupying aprocessor solely. In hardware aspect, we design an effective hardware mechanism, called Back-Door, tocommunicate two independent processors which can not be operated together, such as the dual PowerPC 405 coresin the Xilinx ML310 system. The experimental results reveal that the two mechanisms can obtain significantperformance enhancements

    Tutorial: Using the UML profile for MARTE to MPSoC co-design dedicated to signal processing

    Get PDF
    International audienceThis paper demonstrates the use of a model driven design flow for Multiprocessor System on chips (MPSoCs) such as those dedicated to intensive signal processing applications. The most intensive part of these applications is usually composed of systematic signal processing followed by intensive data processing. The systematic signal processing mainly consists of a chain of filters and regular processing applied on the input signals independently of the signal values. It results in a characterization of the input signals with values of interest. The intensive data processing applies irregular computations on these values of interest. Those computations may depend on the signal values. Examples of these applications are Software Radio Receiver, Sonar Beam Forming and Multimedia video codes

    ReSP: A Nonintrusive Transaction-Level Reflective MPSoC Simulation Platform for Design Space Exploration

    Full text link

    Performance Optimization Strategies for Transactional Memory Applications

    Get PDF
    This thesis presents tools for Transactional Memory (TM) applications that cover multiple TM systems (Software, Hardware, and hybrid TM) and use information of all different layers of the TM software stack. Therefore, this thesis addresses a number of challenges to extract static information, information about the run time behavior, and expert-level knowledge to develop these new methods and strategies for the optimization of TM applications

    Predictable multi-processor system on chip design for multimedia applications

    Get PDF
    The design of multimedia systems has become increasingly complex due to consumer requirements. Consumers demand the functionalities offered by a huge desktop from these systems. Many of these systems are mobile. Therefore, power consumption and size of these devices should be small. These systems are increasingly becoming multi-processor based (MPSoCs) for the reasons of power and performance. Applications execute on these systems in different combinations also known as use-cases. Applications may have different performance requirements in each use-case. Currently, verification of all these use-cases takes bulk of the design effort. There is a need for analysis based techniques so that the platforms have a predictable behaviour and in turn provide guarantees on performance without expending precious man hours on verification. In this dissertation, techniques and architectures have been developed to design and manage these multi-processor based systems efficiently. The dissertation presents predictable architectural components for MPSoCs, a Predictable MPSoC design strategy, automatic platform synthesis tool, a run-time system and an MPSoC simulation technique. The introduction of predictability helps in rapid design of MPSoC platforms. Chapter 1 of the thesis studies the trends in modern multimedia applications and processor architectures. The chapter further highlights the problems in the design of MPSoC platforms and emphasizes the need of predictable design techniques. Predictable design techniques require predictable application and architectural components. The chapter further elaborates on Synchronous Data Flow Graphs which are used to model the applications throughout this thesis. The chapter presents the architecture template used in this thesis and enlists the contributions of the thesis. One of the contributions of this thesis is the design of a predictable component called communication assist. Chapter 2 of the thesis describes the architecture of this communication assist. The communication assist presented in this thesis not only decouples the communication from computation but also provides timing guarantees. Based on this communication assist, an MPSoC platform generation technique has been presented that can design MPSoC platforms capable of satisfying the throughput constraints of multiple applications in all use-cases. The technique is presented in Chapter 3. The design strategy uses three simple steps for platform design. In the first step it finds the required number of processors. The second step minimizes the communication interconnect between the processors and the third step minimizes the communication memory requirement of the platform. Further in Chapter 4, a tool has been developed to generate CA-based platforms for FPGAs. The output of this tool can be used to synthesize platforms on real hardware with the help of FPGA synthesis tools. The applications executing on these platforms often exhibit dynamism e.g. variation in task execution times and change in application throughput requirements. Further, new applications may often be added by consumers at run-time. Resource managers have been presented in literature to handle such dynamic situations. However, the scalability of these resource managers becomes an issue with the increase in number of processors and applications. Chapter 5 presents distributed run-time resource management techniques. Two versions of distributed resource managers have been presented which are scalable with the number of applications and processors. MPSoC platforms for real-time applications are designed assuming worst-case task execution times. It is known that the difference between average-case and worst-case behaviour can be quite large. Therefore, knowing the average case performance is also important for the system designer, and software simulation is often employed to estimate this. However, simulation in software is slow and does not scale with the number of applications and processing elements. In Chapter 6, a fast and scalable simulation methodology is introduced that can simulate the execution of multiple applications on an MPSoC platform. It is based on parallel execution of SDF (Synchronous Data Flow) models of applications. The simulation methodology uses Parallel Discrete Event Simulation (PDES) primitives and it is termed as "Smart Conservative PDES". The methodology generates a parallel simulator which is synthesizable on FPGAs. The framework can also be used to model dynamic arbitration policies which are difficult to analyse using models. The generated platform is also useful in carrying out Design Space Exploration as shown in the thesis. Finally, Chapter 7 summarizes the main findings and (practical) implications of the studies described in previous chapters of this dissertation. Using the contributions mentioned in the thesis, a designer can design and implement predictable multiprocessor based systems capable of satisfying throughput constraints of multiple applications in given set of use-cases, and employ resource management strategies to deal with dynamism in the applications. The chapter also describes the main limitations of this dissertation and makes suggestions for future research

    Fast simulation techniques for microprocessor design space exploration

    Get PDF
    Designing a microprocessor is extremely time-consuming. Computer architects heavily rely on architectural simulators, e.g., to drive high-level design decisions during early stage design space exploration. The benefit of architectural simulators is that they yield relatively accurate performance results, are highly parameterizable and are very flexible to use. The downside, however, is that they are at least three or four orders of magnitude slower than real hardware execution. The current trend towards multicore processors exacerbates the problem; as the number of cores on a multicore processor increases, simulation speed has become a major concern in computer architecture research and development. In this dissertation, we propose and evaluate two simulation techniques that reduce the simulation time significantly: statistical simulation and interval simulation. Statistical simulation speeds up the simulation by reducing the number of dynamically executed instructions. First, we collect a number of program execution characteristics into a statistical profile. From this profile we can generate a synthetic trace that exhibits the same execution behavior but which has a much shorter trace length as compared to the original trace. Simulating this synthetic trace then yields a performance estimate. Interval simulation raises the level of abstraction in architectural simulation; it replaces the core-level cycle-accurate simulation model by a mechanistic analytical model. The analytical model builds on insights from interval analysis: miss events divide the smooth streaming of instructions into so called intervals. The model drives the timing by analyzing the type of the miss events and their latencies, instead of tracking the individual instructions as they propagate through the pipeline stages

    Improving the Scalability of High Performance Computer Systems

    Full text link
    Improving the performance of future computing systems will be based upon the ability of increasing the scalability of current technology. New paths need to be explored, as operating principles that were applied up to now are becoming irrelevant for upcoming computer architectures. It appears that scaling the number of cores, processors and nodes within an system represents the only feasible alternative to achieve Exascale performance. To accomplish this goal, we propose three novel techniques addressing different layers of computer systems. The Tightly Coupled Cluster technique significantly improves the communication for inter node communication within compute clusters. By improving the latency by an order of magnitude over existing solutions the cost of communication is considerably reduced. This enables to exploit fine grain parallelism within applications, thereby, extending the scalability considerably. The mechanism virtually moves the network interconnect into the processor, bypassing the latency of the I/O interface and rendering protocol conversions unnecessary. The technique is implemented entirely through firmware and kernel layer software utilizing off-the-shelf AMD processors. We present a proof-of-concept implementation and real world benchmarks to demonstrate the superior performance of our technique. In particular, our approach achieves a software-to-software communication latency of 240 ns between two remote compute nodes. The second part of the dissertation introduces a new framework for scalable Networks-on-Chip. A novel rapid prototyping methodology is proposed, that accelerates the design and implementation substantially. Due to its flexibility and modularity a large application space is covered ranging from Systems-on-chip, to high performance many-core processors. The Network-on-Chip compiler enables to generate complex networks in the form of synthesizable register transfer level code from an abstract design description. Our engine supports different target technologies including Field Programmable Gate Arrays and Application Specific Integrated Circuits. The framework enables to build large designs while minimizing development and verification efforts. Many topologies and routing algorithms are supported by partitioning the tasks into several layers and by the introduction of a protocol agnostic architecture. We provide a thorough evaluation of the design that shows excellent results regarding performance and scalability. The third part of the dissertation addresses the Processor-Memory Interface within computer architectures. The increasing compute power of many-core processors, leads to an equally growing demand for more memory bandwidth and capacity. Current processor designs exhibit physical limitations that restrict the scalability of main memory. To address this issue we propose a memory extension technique that attaches large amounts of DRAM memory to the processor via a low pin count interface using high speed serial transceivers. Our technique transparently integrates the extension memory into the system architecture by providing full cache coherency. Therefore, applications can utilize the memory extension by applying regular shared memory programming techniques. By supporting daisy chained memory extension devices and by introducing the asymmetric probing approach, the proposed mechanism ensures high scalability. We furthermore propose a DMA offloading technique to improve the performance of the processor memory interface. The design has been implemented in a Field Programmable Gate Array based prototype. Driver software and firmware modifications have been developed to bring up the prototype in a Linux based system. We show microbenchmarks that prove the feasibility of our design

    OpenDF - A Dataflow Toolset for Reconfigurable Hardware and Multicore Systems

    Get PDF
    International audienceThis paper presents the OpenDF framework and recalls that dataflow programming was once invented to address the problem of parallel computing. We discuss the problems with an imperative style, von Neumann programs, and present what we believe are the advantages of using a dataflow programming model. The CAL actor language is briefly presented and its role in the ISO/MPEG standard is discussed. The Dataflow Interchange Format (DIF) and related tools can be used for analysis of actors and networks, demonstrating the advantages of a dataflow approach. Finally, an overview of a case study implementing an MPEG-4 decoder is given
    • …
    corecore