30 research outputs found

    On-chip arrayed waveguide grating fabricated on thin film lithium niobate

    Full text link
    We design an on-chip 8-channel TFLN AWG and fabricate the device using photolithography assisted chemo-mechanical etching (PLACE) technique. We experimentally measure the transmission of the fabricated TFLN AWG near the central wavelength of 1550 nm. We obtain an on-chip loss as low as 3.32 dB, a single-channel bandwidth of 1.6 nm and a total-channel bandwidth of 12.8 nm. The crosstalk between adjacent channels was measured to be below -7.01 dB within the wavelength range from 1543 nm to 1558 nm, and the crosstalk between non-adjacent channels was below -15 dB

    Building blocks of a silicon photonic integrated wavelength division multiplexing transmitter for detector instrumentation = Bausteine für einen integrierten siliziumphotonischen Wellenlängenmultiplexsender zur Detektorinstrumentierung

    Get PDF
    In dieser Arbeit werden Datenübertragungssysteme für die Detektorinstrumentierung und die Herausforderungen dieser einzigartigen Anwendung untersucht. Begrenzt durch die hohe Strahlungsintensität, den verfügbaren Platz, niedrige Temperaturen usw., liegt die Auslesebandbreite von Detektoren nach dem derzeitigen Stand der Technik im Bereich von einigen zehn Gb/s pro Faser. Angesichts des ständig wachsenden Datenvolumens ist die Verbesserung der Übertragungsbandbreite ein dringend zu lösendes Problem. Daher wird in dieser Arbeit ein universell einsetzbares Konzept für einen integrierten, siliziumphotonischen Sender auf Basis der Wellenlängenmultiplex-Technologie vorgeschlagen. Die angestrebte Übertragungsbandbreite in der ersten Version beträgt 40 Gb/s. Zwei Schlüsselbausteine des integrierten Senders, der Mach-Zehnder-Modulator und der Wellenlängen-Demultiplexer, werden im Detail untersucht. Eine Reihe von Modulatoren mit unterschiedlichen Längen und Ätztiefen werden entworfen, hergestellt und charakterisiert. Für den Entwurf des Demultiplexers wird eine angepasste Entwurfsmethode entwickelt, die mit zwei dedizierten Brennpunkten arbeitet. Ein neuer Entwurfsparameter wird in diese Methode eingeführt, um sie flexibler und leichter anwendbar zu machen. Die Auswirkung der Modifizierung des eingeführten Parameters wird anhand einer Reihe vergleichbarer Bauelemente untersucht. Alle Charakterisierungen bestätigen die Machbarkeit des vorgeschlagenen Konzepts

    2023 Astrophotonics Roadmap: pathways to realizing multi-functional integrated astrophotonic instruments

    Get PDF
    This is the final version. Available on open access from IOP Publishing via the DOI in this recordData availability statement: The data that support the findings of this study are available upon reasonable request from the authors.Photonic technologies offer numerous functionalities that can be used to realize astrophotonic instruments. The most spectacular example to date is the ESO Gravity instrument at the Very Large Telescope in Chile that combines the light-gathering power of four 8 m telescopes through a complex photonic interferometer. Fully integrated astrophotonic devices stand to offer critical advantages for instrument development, including extreme miniaturization when operating at the diffraction-limit, as well as integration, superior thermal and mechanical stabilization owing to the small footprint, and high replicability offering significant cost savings. Numerous astrophotonic technologies have been developed to address shortcomings of conventional instruments to date, including for example the development of photonic lanterns to convert from multimode inputs to single mode outputs, complex aperiodic fiber Bragg gratings to filter OH emission from the atmosphere, complex beam combiners to enable long baseline interferometry with for example, ESO Gravity, and laser frequency combs for high precision spectral calibration of spectrometers. Despite these successes, the facility implementation of photonic solutions in astronomical instrumentation is currently limited because of (1) low throughputs from coupling to fibers, coupling fibers to chips, propagation and bend losses, device losses, etc, (2) difficulties with scaling to large channel count devices needed for large bandwidths and high resolutions, and (3) efficient integration of photonics with detectors, to name a few. In this roadmap, we identify 24 key areas that need further development. We outline the challenges and advances needed across those areas covering design tools, simulation capabilities, fabrication processes, the need for entirely new components, integration and hybridization and the characterization of devices. To realize these advances the astrophotonics community will have to work cooperatively with industrial partners who have more advanced manufacturing capabilities. With the advances described herein, multi-functional integrated instruments will be realized leading to novel observing capabilities for both ground and space based platforms, enabling new scientific studies and discoveries.National Science Foundation (NSF)NAS

    Reconfigurable Reflective Arrayed Waveguide Grating on Silicon Nitride

    Full text link
    [ES] La presente tesis se ha centrado en el modelado, diseño y demonstración experimental por primera vez del dispositivo Reconfigurable Reflective Arrayed Waveguide Grating (R-RAWG). Para la consecución de este dispositivo que tiene posibilidades de uso en la espectrometría, una plataforma de nitruro de silicio llamada CNM-VLC se ha usado, ya que este material permite operar en un gran ancho de banda. Esta plataforma posee ciertas limitaciones y los elementos necesarios para el funcionamiento de este dispositivo tenían un performance bajo. Por ello, se ha desarrollado y validado una metodología que ha permitido obtener mejores divisores. Además, se ha diseñado un inverted taper que ha mejorado considerablemente el acoplo de luz al chip. Esto ha sido gracias a un exhaustivo análisis de opciones existentes en la literatura que también ha permitido escoger la mejor opción para realizar un espejo reconfigurable en la plataforma sin cambiar ni añadir ningún proceso de fabricación. Se han demostrado espejos reconfigurables gracias a utilizar divisores ópticos realimentados y también se ha desarrollado códigos que predicen el comportamiento del dispositivo experimentalmente. Con todo el trabajo realizado, se ha diseñado un R-RAWG para que pudiera operar en un gran ancho de banda y que los actuadores de fase no tuvieran peligro de estropearse. También se ha desarrollado un código para el modelado del R-RAWG que permite imitar la fabricación de estos dispositivos y que, gracias a esto, se ha desarrollado un método o algoritmo llamado DPASTOR, que usa algoritmos usados en machine learning, para optimizar la respuesta con tan sólo la potencia óptica de salida. Finalmente, se ha diseñado una PCB para poder conectar eléctricamente el chip fotónico y se ha desarrollado un método de medida que ha permitido tener una respuesta estable consiguiendo demostrar multitud de respuestas de filtros ópticos con el mismo dispositivo.[CAT] La present tesi s'ha centrat en el modelatge, disseny i demonstració experimental per primera vegada del dispositiu Reconfigurable Reflective Arrayed Waveguide Grating (R-RAWG). Per a la consecució d'aquest dispositiu que té possibilitats d'ús en l'espectrometria, una plataforma de nitrur de silici anomenada CNM-VLC s'ha usat ja que aquest material permet operar en una gran amplada de banda. Aquesta plataforma posseeix certes limitacions i els elements necessaris per al funcionament d'aquest dispositiu tenien un performance baix. Per això, s'ha desenvolupat i validat una metodologia que ha permés obtindre millors divisors i també, gràcies als processos de fabricació, s'ha dissenyat un acoplador que ha millorat considerablement l'acoble de llum al xip. Això ha sigut gràcies a un exhaustiu analisis d'opcions existents en la literatura que també ha permés triar la millor opció per a realitzar un espill reconfigurable en la plataforma sense canviar ni afegir cap procés de fabricació. S'han demonstrat espills reconfigurables gràcies a utilitzar divisors realimentats i també s'ha desenvolupat codis que prediuen el comportament del dispostiu experimentalment. Amb tot el treball realitzat, s'ha dissenyat un R-RAWG fent ús de determinades consideracions perquè poguera operar en una gran amplada de banda i que els actuadors de fase no tingueren perill de desbaratar-se. També s'ha desenvolupat un codi per al modelatge del R-RAWG que permet imitar la fabricació d'aquests dispositius i que, gràcies a això, s'ha desenvolupat un mètode o algorisme anomenat DPASTOR, que usa algorismes usats en machine learning, per a optimitzar la resposta amb tan sols la potència òptica d'eixida. Finalment, s'ha dissenyat una PCB per a poder connectar elèctricament el xip fotònic i s'ha desenvolupat un mètode de mesura que ha permés tindre una resposta estable aconseguint demostrar multitud de respostes de filtres òptics amb el mateix dispositiu.[EN] This thesis is focused on the modelling, design and experimental demonstration for the first time of Reconfigurable Reflective Arrayed Waveguide Grating (R-RAWG) device. In order to build this device, that can be employed in spectrometry, a silicon nitride platform termed CNM-VLC has been chosen since this material allows to operate in broad range of wavelengths. This platform has the necessary elements, but some limitations because the operation of this device had a low performance. Therefore, a methodology has been developed and validated, which has allowed to obtain better splitters. Also an inverted taper has been designed, which has considerably improved the coupling of light to the chip. This has been possible thanks to an exhaustive analysis of existing options in the literature, that has allowed choosing the best option to make a reconfigurable mirror on the platform without changing or adding new manufacturing steps. Reconfigurable mirrors have been demonstrated by using feedback splitters. Furthermore, codes have been developed to predict the behaviour of the actual device. With all the work done, a R-RAWG has been designed by using certain considerations so that it can operate over a broad wavelength range and the phase actuators are not in danger of being damaged. A code has also been developed for the modelling of the R-RAWG, which allows manufacturing imperfections to be considered, thanks to this, a method or algorithm called DPASTOR has been developed. DPASTOR resembles machine learning to optimise the response by just using the optical output power. Finally, a PCB and an assembly with the chip interconnected to it have been made and designed. Moreover, a measurement method has been developed, which has made it possible to have a stable response and to demonstrate a multitude of optical filter responses with the same device.Fernández Vicente, J. (2021). Reconfigurable Reflective Arrayed Waveguide Grating on Silicon Nitride [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165783TESI

    Advanced arrayed waveguide gratings: models, design strategies and experimental demonstration

    Full text link
    [EN] The present PhD thesis deals on the model, design and experimental demonstration of Arrayed Waveguide Grating (AWG) with advanced features. Firstly, building upon existing AWG formulations, design equations are provided, libraries developed and all this is experimentally validated with devices in Indium Phosphide (InP) and Silicon-on-insulator (SOI) technologies. Next, a model and experimental validation is reported for an Interleave-Chirped Arrayed Waveguide Grating (IC-AWG), which is able to process optical signals as WDM demultiplexer, polarization splitter and phase diversity component all in a single device. This device was fabricated and tested in InP technology. The second innovative AWG demonstrated in this thesis, a Reflective type (R-AWG), whose layout allows for tailoring the pass-band shape and to change the spectral resolution. A demonstration of design and fabrication for this device is provided in SOI technology. The last AWG with innovative concepts is one driven by Surface Acoustic Waves (AWG-SAW), where the spectral channels can be tuned by means of acousto-optic effect. The device was fabricated in Aluminium Gallium Arsenide (AlGaAs) technology, and measurements are provided to validate the concept and design flow. In parallel this thesis has resulted in the development of different AWG layouts for a wide number of (generic) technologies and foundries, coded into design libraries, of use in a de-facto standard software employed for the design of photonic integrated circuits. These design libraries have been licensed to the UPV spin-off company VLC Photonics S.L.[ES] La presente tesis se ha centrado en el modelado, diseño y demostración experimental del dispositivo Arrayed Waveguide Grating (AWG) con funcionalidades avanzadas. Primero, usando la formulación existente sobre AWGs se aportan ecuaciones y librerías de diseño, y se validan experimentalmente por medio de dispositivos fabricados en tecnologías de Indium Phosphide (InP) y Silicon-on-insulator (SOI). Después, se reporta un modelo y demostración experimental para un Interleave-Chirped Arrayed Waveguide Grating (IC-AWG), el cual es capaz de procesar señales ópticas como demultiplexor WDM, divisor de polarización y componente de diversidad de fase en un único dispositivo. Este dispositivo fue fabricado y probado en tecnología de InP. El segundo AWG innovador demostrado en esta tesis es de tipo Reflectante (R-AWG), cuyo diseño permite modificar la forma espectral del canal y cambiar su resolución espectral, incluyendo una demostración de diseño y fabricación de este dispositivo en tecnología de SOI. El último AWG que incluye conceptos innovadores es uno sintonizable por Acoustic Waves (AWGSAW), donde los canales espectrales pueden ser sintonizados por medio del efecto acusto-óptico. Dicho dispositivo fue fabricado en tecnología de Aluminium Gallium Arsenide (AlGaAs), y se han incluido medidas experimentales para validar el concepto y el flujo de diseño. En paralelo junto con esta tesis se han desarrollado diferentes diseños para el AWG en un amplio número de tecnologías (genéricas) y plataformas de fabricación, implementadas en unas librerías de diseño para uno de los softwares m¿as utilizados para el diseño de circuitos integrados ópticos, siendo actualmente el estándar de facto. Dichas librerías de diseño han sido licenciadas a la compañía VLC Photonics S.L., spin-off de la UPV.[CA] La present tesi ha estat centrada en el modelatge, disseny i demostració experimental del dispositiu Arrayed Waveguide Grating (AWG) amb funcionalitats avançades. Primer, usant la formulació existent sobre AWGs s'aporten equacions i llibreries de disseny, i es validen experimentalment per mitjà de dispositius fabricats en tecnologies de Indium Phosphide (InP) i Silicon-on-insulator (SOI). Després, es reporta un model i demostració experimental per a un Interleave-Chirped Arrayed Waveguide Grating (IC-AWG), el qual és capaç de processar senyals òptiques com demultiplexor WDM, divisor de polarització i component de diversitat de fase en un únic dispositiu. Aquest dispositiu va ser fabricat i provat en tecnologia de InP. El segon AWG innovador demostrat en aquesta tesi és de tipus Reflector (R-AWG), amb un disseny que permet modificar la forma espectral del canal i canviar la seua resolució espectral, incloent una demostració de disseny i fabricació d'aquest dispositiu en tecnologia de SOI. L'últim AWG que inclou conceptes innovadors és un sintonitzable per Acoustic Waves (AWG-SAW), on els canals espectrals poden ser sintonitzats per mitjà de l'efecte acusto-òptic. Aquest dispositiu va ser fabricat en tecnologia de Aluminium Gallium Arsenide (AlGaAs), i s'han inclòs mesures experimentals per validar el concepte i el flux de disseny. En paral.lel juntament amb aquesta tesi s'han desenvolupat diferents dissenys per al AWG en un ampli nombre de tecnologies (genèriques) i plataformes de fabricació, implementades en unes llibreries de disseny per a un dels programaris més utilitzats per al disseny de circuits integrats òptics, sent actualment l'estàndard de facto. Aquestes llibreries de disseny han estat llicenciades a la companyia VLC Photonics S.L., spin-off de la UPV.Gargallo Jaquotot, BA. (2016). Advanced arrayed waveguide gratings: models, design strategies and experimental demonstration [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/74646TESI

    Metamateriales sub-longitud de onda para microdispositivos fotónicos de altas prestaciones

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, leída el 28-04-2020Photonics has become of paramount importance in many areas of our everyday life owing to its inherent potential to develop not only telecom and datacom solutions, but also many other applications such as metrology [DeMiguel’18], energy generation and saving [Polman’12, Miller’17], spectrometry [Velasco’13a], sensing [Rodríguez-Barrios’10], medicine [Morgner’00] and industrial manufacturing [Malinauskas’16], to name a few. Particularly, integrated optics has attracted increasing industrial attention and scientific efforts to implement photonic integrated circuits (PICs) capable of tackling all abovementioned tasks in compact and efficient systems.Among all the available materials, silicon photonics leverages the maturity of the fabrication techniques reached by the microelectronics industry, enabling cost-effective mass production [Chen’18]. Different material platforms with a high refractive index contrast have been proposed for silicon photonics to achieve higher integration levels and perform more complex functions in a single chip, such as silicon-on-insulator (SOI) and silicon nitride (Si3N4, commonly simplified to SiN). The increased integration capacity of silicon photonics has enabled to tackle one of our greatest technological challenges: global data traffic inside data centers. Besides short-range optical interconnects for telecom and datacom applications, the progress in silicon photonics also encompasses many other untapped applications that are being explored by academia and industry: absorption spectroscopy and bio-sensing [Herrero-Bermello’17, Wangüemert-Pérez’19], light detection and ranging (LIDAR) [Poulton’17a], quantum computing [Harris’16], microwave and terahertz photonics [Marpaung’19, Harter’18], nonlinear optics [Leuthold’10], and many others...La fotónica ha adquirido una importancia fundamental en muchos ámbitos de nuestra vida cotidiana debido a su potencial intrínseco para desarrollar soluciones no sólo en el campo de las telecomunicaciones y las interconexiones de corto alcance, sino también en otras muchas áreas como la metrología [DeMiguel’18], la generación de energía [Polman’12, Miller’17], la espectrometría [Velasco’13a], la detección [Rodríguez-Barrios’10], la medicina [Morgner’00] y la fabricación industrial [Malinauskas’16]. En particular, la óptica integrada ha atraído tanto la atención de la industria como los esfuerzos científicos para implementar circuitos fotónicos integrados (PICs, Photonic Integrated Circuits) capaces de abordar todas las tareas mencionadas anteriormente en sistemas compactos y eficientes. Entre todos los materiales disponibles, la fotónica de silicio aprovecha la madurez de las técnicas de fabricación alcanzadas por la industria de la microelectrónica, permitiendo una producción en masa rentable [Chen’18]. Para maximizar su densidad de integración y poder realizar funciones más complejas en un único chip, diferentes plataformas materiales con un alto contraste de índice de refracción se han propuesto, como por ejemplo las plataformas de silicio sobre aislante (SOI, Silicon-On-Insulator) y de nitruro de silicio (Si3N4, comúnmente simplificada a SiN, Silicon Nitride). Esta mayor densidad de integración ha permitido abordar uno de nuestros mayores desafíos tecnológicos hasta la fecha: el tráfico de datos global dentro de los centros de datos. Además de las interconexiones ópticas de corto alcance, el progreso de la fotónica de silicio también comprende muchas otras aplicaciones inexploradas que están siendo estudiadas en el ámbito académico e industrial como, por ejemplo, la espectroscopía de absorción y biodetección [Herrero-Bermello’17, Wangüemert-Pérez’19], LIDAR (Light Detection And Ranging) [Poulton’17a], computación cuántica [Harris’16], fotónica de microondas y terahercios [Marpaung’19, Harter’18], óptica no lineal [Leuthold’10], y muchas otras...Fac. de Ciencias FísicasTRUEunpu

    Integrated Optical Filters for Microwave Photonic Applications

    Full text link
    [EN] Microwave photonics (MWP) is a well-established research field that investigates the use of photonic technologies to generate, distribute, process and analyze RF waveforms in the optical domain. Despite its great potential to solve long-standing problems faced by both the microwave and electronics industries, MWP systems are bulky, expensive and consume a lot of power. Integrated microwave photonics (IMWP) is an emerging area of research that promises to alleviate most of these drawbacks through the use of photonic integrated circuits (PIC). In this work, we have aimed at further closing the gap between the worlds of MWP and integrated optics. In particular, we have focused on the design and experimental characterization of PICs with reconfigurable, ring-assisted Mach-Zehnder interferometer filters (RAMZI), and demonstrated its potential use in different IMWP applications. These filters consist of a symmetric MZI loaded with ring resonators, which are coupled to the MZI branches by different optical couplers. The contributions of this thesis can be split into two sections. In the first one, we demonstrate integrated optical couplers and reflectors with variable power splitting and reflections ratios. These exploit the well-known properties of tapered multimode interference couplers (MMI), and their inherent robustness makes them highly suitable for the implementation of both RAMZI and reflective filters. Besides, we study in detail the impact of manufacturing deviations in the performance of a 4x4 MMI-based 90º hybrid, which is a fundamental building block in coherent optical communication systems. In the second section, we demonstrate the use of integrated RAMZI filters for three different IMWP applications, including instantaneous frequency measurement (IFM), direct detection of frequency-modulated signals in a MWP link, as well as in tunable, coherent MWP filters. A theoretical analysis of the limits and trade-offs that exist in photonics-based IFM systems is also provided. Even though these are early proof-of-concept experiments, we hope that further technological developments in the field will finally turn MWP into a commercial reality.[ES] La fotónica de microondas (MWP) es un campo de investigación que estudia el uso de tecnologías ópticas para generar, distribuir, procesar y analizar señales de RF. A pesar de su gran potencial para resolver algunos de los problemas a los que se enfrentan las industrias electrónica y de microondas, estos sistemas son voluminosos, caros y consumen mucha potencia. La fotónica de microondas integrada (IMWP) es un área emergente que promete solucionar todos estos inconvenientes a través de la utilización de circuitos ópticos integrados (PIC). En esta tesis, hemos pretendido avanzar un poco más en el acercamiento entre estas dos disciplinas. En concreto, nos hemos centrado en el diseño y caracterización experimental de PICs con filtros reconfigurables basados en interferómetros Mach-Zehnder cargados con anillos (RAMZI), y demostrado su potencial uso en diferentes aplicaciones de IMWP. Los filtros RAMZI están hecho básicamente de un MZI simétrico cargado con anillos, los cuales a su vez se acoplan a las ramas del interferómetro a través de distintos acopladores ópticos. Las contribuciones de este trabajo se pueden dividir en dos partes. En la primera, hemos demostrado acopladores y reflectores ópticos integrados con coeficientes de acoplo y reflexión variables. Éstos explotan las propiedades de los acopladores por interferencia multimodal (MMI), y su robustez les hace muy atractivos para la implementación de filtros RAMZI y de tipo reflectivo. Además, hemos analizado el impacto que las tolerancias de fabricación tienen en el rendimiento de un híbrido óptico de 90º basado en un MMI 4x4, el cual es un elemento fundamental en los sistemas de comunicaciones ópticas coherentes. En la segunda parte, hemos demostrado el uso de filtros RAMZI en tres aplicaciones distintas de IMWP. En concreto, hemos utilizado dichos filtros para implementar sistemas de medida de frecuencia instantánea (IFM), detección directa de señales moduladas en frecuencia para enlaces fotónicos, así como en filtros coherentes y sintonizables de MWP. También hemos desarrollado un análisis teórico de las limitaciones y problemas que existen en los sistemas IFM. A pesar de que todos los experimentos realizados han consistido en prototipos para una prueba de concepto, esperamos que futuros avances tecnológicos permitan que la fotónica de microondas se convierta algún día en una realidad comercial.[CA] La fotònica de microones (MWP) és un camp d'investigació que estudia l'ús de tecnologies òptiques per a generar, distribuir, processar y analitzar senyals de radiofreqüència. A pesar del seu gran potencial per a resoldre alguns dels problemes als que s'enfronten les indústries electrònica i de microones, estos sistemes son voluminosos, cars i consumixen molta potència. La fotònica de microones integrada (IMWP) és un àrea emergent que promet solucionar tots estos inconvenients a través de la utilització de circuits òptics integrats (PIC). En esta tesi, hem pretés avançar un poc més en l'acostament entre estes dos disciplines. En concret, ens hem centrat en el disseny i caracterització experimental de PICs amb filtres reconfigurables basats en interferòmetres Mach-Zehnder carregats amb anells (RAMZI), i demostrat el seu potencial en diferents aplicacions d' IMWP. Els filtres RAMZI estan fets bàsicament d'un MZI simètric carregat amb anells, els quals, al seu torn, s'acoblen a les branques del interferòmetre a través de distints acobladors òptics. Les contribucions d'este treball es poden dividir en dos parts. En la primera, hem demostrat acobladors i reflectors òptics integrats amb coeficients de transmissió i reflexió variables. Estos exploten les propietats dels acobladors per interferència multimodal (MMI), i la seua robustesa els fa molt atractius per a la implementació de filtres RAMZI i de tipo reflectiu. A més a més, hem analitzat l'impacte que les toleràncies de fabricació tenen en el rendiment d'un híbrid òptic de 90 graus basat en un MMI 4x4, el qual és un element fonamental en els sistemes de comunicacions òptiques coherents. En la segona part, hem demostrat l'ús de filtres RAMZI en tres aplicacions diferents de IMWP. En concret, hem utilitzat estos filtres per a implementar sistemes de mesura de freqüència instantània (IFM), detecció directa de senyals modulades en freqüència per a enllaços fotònics, així com en filtres coherents i sintonitzables de MWP. També hem desenvolupat una anàlisi teòrica de les limitacions i problemes que existixen en els sistemes IFM. A pesar de que tots els experiments realitzats han consistit en prototips per a una prova de concepte, esperem que futurs avanços tecnològics permeten que la fotònica de microones es convertisca algun dia en una realitat comercial.Sánchez Fandiño, JA. (2016). Integrated Optical Filters for Microwave Photonic Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/67690TESI

    Germanium-on-silicon photonic integrated circuits for the 5 um wavelength range

    Get PDF

    SILICON NITRIDE INTEGRATED PHOTONIC DEVICES AND THEIR APPLICATIONS IN ASTRONOMY AND QUANTUM PHYSICS

    Get PDF
    The photonics technology has revolutionized the telecommunication industry in the past 40 years with the deployment of the undersea fiber-optic network. Nowadays, with the maturity of silicon photonics technology, the integrated photonic platform is enabling more and more cutting-edge technologies, such as optical transceivers for data center connectivity, automotive LiDARs for self-driving vehicles, the next-generation astronomical instrumentation and nearterm photonic quantum computers, to name a few. In recent years, silicon nitride (Si3N4) material has attracted a significant amount of attention mainly due to the ultra-low loss that can be achieved. Compared to silicon, Si3N4 has a much wider transparency window, and does not suffer from two-photon absorption and free-carrier absorption over the telecommunication band. The relatively low refractive index of Si3N4 also means less sensitivity of optical modes to the waveguide sidewall roughness, therefore reducing the scattering loss. In this dissertation, I will first give an introduction of integrated photonics, and a brief overview of some novel applications and current trends. Next I will graphically show our methods for device fabrication and characterization, and then demonstrate a few integrated photonic devices implemented on the Si3N4 material platform, including Bragg gratings, multimode interferometers, polarization beam splitters, and polarization rotators, with an in-depth discussion of their potentialapplications, principles of operation, simulation and experimental results. I will then embark on a new chapter on arrayed waveguide gratings (AWGs), with emphasis on its application in integrated astronomical spectrometers. To obtain a continuous two-dimensional spectrum, cleaving at the output focal plane of the AWGis required. I will discuss and demonstrate a three-stigmatic-point AWG, which provides an elegant solution to the non-flat focal plane issue in traditional Rowland AWGs. This work is a critical step towards the development of an efficientand miniaturized astronomical spectrograph for the upcoming extremely-large telescopes. Next, I will introduce a one-dimensional nanobeam cavity enabled by a slow-light waveguide. A cubic relation between the quality factor and the length of the cavity will be derived and experimental verification will be demonstrated. The current progress towards the investigation of the Purcell effect of this nanobeam cavity will be discussed, including the platform and the loss characterization of the deposited amorphous silicon material. In the final chapter, I will first summarize the major conclusions from the previous chapters. Then I will briefly discuss some future research directions extending the work in this thesis, including ultra-broadband polarization beam splitter, the development of an on-chip Bell state analyzer, and the design of a polarization-insensitive flat-focal-field spectrometer
    corecore