316 research outputs found

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    Passive Planar Microwave Devices

    Get PDF
    The aim of this book is to highlight some recent advances in microwave planar devices. The development of planar technologies still generates great interest because of their many applications in fields as diverse as wireless communications, medical instrumentation, remote sensing, etc. In this book, particular interest has been focused on an electronically controllable phase shifter, wireless sensing, a multiband textile antenna, a MIMO antenna in microstrip technology, a miniaturized spoof plasmonic antipodal Vivaldi antenna, a dual-band balanced bandpass filter, glide-symmetric structures, a transparent multiband antenna for vehicle communications, a multilayer bandpass filter with high selectivity, microwave planar cutoff probes, and a wideband transition from microstrip to ridge empty substrate integrated waveguide

    A Recent Approach towards Fluidic Microstrip Devices and Gas Sensors: A Review

    Get PDF
    This paper aims to review some of the available tunable devices with emphasis on the techniques employed, fabrications, merits, and demerits of each technique. In the era of fluidic microstrip communication devices, versatility and stability have become key features of microfluidic devices. These fluidic devices allow advanced fabrication techniques such as 3D printing, spraying, or injecting the conductive fluid on the flexible/rigid substrate. Fluidic techniques are used either in the form of loading components, switching, or as the radiating/conducting path of a microwave component such as liquid metals. The major benefits and drawbacks of each technology are also emphasized. In this review, there is a brief discussion of the most widely used microfluidic materials, their novel fabrication/patterning methods

    Design and analysis of wideband passive microwave devices using planar structures

    Get PDF
    A selected volume of work consisting of 84 published journal papers is presented to demonstrate the contributions made by the author in the last seven years of his work at the University of Queensland in the area of Microwave Engineering. The over-arching theme in the author’s works included in this volume is the engineering of novel passive microwave devices that are key components in the building of any microwave system. The author’s contribution covers innovative designs, design methods and analyses for the following key devices and associated systems: Wideband antennas and associated systems Band-notched and multiband antennas Directional couplers and associated systems Power dividers and associated systems Microwave filters Phase shifters Much of the motivation for the work arose from the desire to contribute to the engineering o

    Autonomous smart antenna systems for future mobile devices

    Get PDF
    Along with the current trend of wireless technology innovation, wideband, compact size, low-profile, lightweight and multiple functional antenna and array designs are becoming more attractive in many applications. Conventional wireless systems utilise omni-directional or sectored antenna systems. The disadvantage of such antenna systems is that the electromagnetic energy, required by a particular user located in a certain direction, is radiated unnecessarily in every direction within the entire cell, hence causing interference to other users in the system. In order to limit this source of interference and direct the energy to the desired user, smart antenna systems have been investigated and developed. This thesis presents the design, simulation, fabrication and full implementation of a novel smart antenna system for future mobile applications. The design and characterisation of a novel antenna structure and four-element liner array geometry for smart antenna systems are proposed in the first stage of this study. Firstly, a miniaturised microstrip-fed planar monopole antenna with Archimedean spiral slots to cover WiFi/Bluetooth and LTE mobile applications has been demonstrated. The fundamental structure of the proposed antenna element is a circular patch, which operates in high frequency range, for the purpose of miniaturising the circuit dimension. In order to achieve a multi-band performance, Archimedean spiral slots, acting as resonance paths, have been etched on the circular patch antenna. Different shapes of Archimedean spiral slots have been investigated and compared. The miniaturised and optimised antenna achieves a bandwidth of 2.2GHz to 2.9GHz covering WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) mobile standards. Then a four-element linear antenna array geometry utilising the planar monopole elements with Archimedean spiral slots has been described. All the relevant parameters have been studied and evaluated. Different phase shifts are excited for the array elements, and the main beam scanning range has been simulated and analysed. The second stage of the study presents several feeding network structures, which control the amplitude and phase excitations of the smart antenna elements. Research begins with the basic Wilkinson power divider configuration. Then this thesis presents a compact feeding network for circular antenna array, reconfigurable feeding networks for tuning the operating frequency and polarisations, a feeding network on high resistivity silicon (HRS), and an ultrawide-band (UWB) feeding network covering from 0.5GHz to 10GHz. The UWB feeding network is used to establish the smart antenna array system. Different topologies of phase shifters are discussed in the third stage, including ferrite phase shifters and planar phase shifters using switched delay line and loaded transmission line technologies. Diodes, FETs, MMIC and MEMS are integrated into different configurations. Based on the comparison, a low loss and high accurate Hittite MMIC analogue phase shifter has been selected and fully evaluated for this implementation. For the purpose of impedance matching and field matching, compact and ultra wideband CPW-to-Microstrip transitions are utilised between the phase shifters, feeding network and antenna elements. Finally, the fully integrated smart antenna array achieves a 10dB reflection coefficient from 2.25GHz to 2.8GHz, which covers WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) mobile applications. By appropriately controlling the voltage on the phase shifters, the main beam of the antenna array is steered ±50° and ±52°, for 2.45GHz and 2.6GHz, respectively. Furthermore, the smart antenna array demonstrates a gain of 8.5dBi with 40° 3dB bandwidth in broadside direction, and has more than 10dB side lobe level suppression across the scan. The final stage of the study investigates hardware and software automatic control systems for the smart antenna array. Two microcontrollers PIC18F4550 and LPC1768 are utilised to build the control PCBs. Using the graphical user interfaces provided in this thesis, it is able to configure the beam steering of the smart antenna array, which allows the user to analyse and optimise the signal strength of the received WiFi signals around the mobile device. The design strategies proposed in this thesis contribute to the realisation of adaptable and autonomous smart phone systems

    Efficient and Linear CMOS Power Amplifier and Front-end Design for Broadband Fully-Integrated 28-GHz 5G Phased Arrays

    Get PDF
    Demand for data traffic on mobile networks is growing exponentially with time and on a global scale. The emerging fifth-generation (5G) wireless standard is being developed with millimeter-wave (mm-Wave) links as a key technological enabler to address this growth by a 2020 time frame. The wireless industry is currently racing to deploy mm-Wave mobile services, especially in the 28-GHz band. Previous widely-held perceptions of fundamental propagation limitations were overcome using phased arrays. Equally important for success of 5G is the development of low-power, broadband user equipment (UE) radios in commercial-grade technologies. This dissertation demonstrates design methodologies and circuit techniques to tackle the critical challenge of key phased array front-end circuits in low-cost complementary metal oxide semiconductor (CMOS) technology. Two power amplifier (PA) proof-of-concept prototypes are implemented in deeply scaled 28- nm and 40-nm CMOS processes, demonstrating state-of-the-art linearity and efficiency for extremely broadband communication signals. Subsequently, the 40 nm PA design is successfully embedded into a low-power fully-integrated transmit-receive front-end module. The 28 nm PA prototype in this dissertation is the first reported linear, bulk CMOS PA targeting low-power 5G mobile UE integrated phased array transceivers. An optimization methodology is presented to maximizing power added efficiency (PAE) in the PA output stage at a desired error vector magnitude (EVM) and range to address challenging 5G uplink requirements. Then, a source degeneration inductor in the optimized output stage is shown to further enable its embedding into a two-stage transformer-coupled PA. The inductor helps by broadening inter-stage impedance matching bandwidth, and helping to reduce distortion. Designed and fabricated in 1P7M 28 nm bulk CMOS and using a 1 V supply, the PA achieves +4.2 dBm/9% measured Pout/PAE at −25 dBc EVM for a 250 MHz-wide, 64-QAM orthogonal frequency division multiplexing (OFDM) signal with 9.6 dB peak-to-average power ratio (PAPR). The PA also achieves 35.5%/10% PAE for continuous wave signals at saturation/9.6dB back-off from saturation. To the best of the author’s knowledge, these are the highest measured PAE values among published K- and K a-band CMOS PAs to date. To drastically extend the communication bandwidth in 28 GHz-band UE devices, and to explore the potential of CMOS technology for more demanding access point (AP) devices, the second PA is demonstrated in a 40 nm process. This design supports a signal radio frequency bandwidth (RFBW) >3× the state-of-the-art without degrading output power (i.e. range), PAE (i.e. battery life), or EVM (i.e. amplifier fidelity). The three-stage PA uses higher-order, dual-resonance transformer matching networks with bandwidths optimized for wideband linearity. Digital gain control of 9 dB range is integrated for phased array operation. The gain control is a needed functionality, but it is largely absent from reported high-performance mm-Wave PAs in the literature. The PA is fabricated in a 1P6M 40 nm CMOS LP technology with 1.1 V supply, and achieves Pout/PAE of +6.7 dBm/11% for an 8×100 MHz carrier aggregation 64-QAM OFDM signal with 9.7 dB PAPR. This PA therefore is the first to demonstrate the viability of CMOS technology to address even the very challenging 5G AP/downlink signal bandwidth requirement. Finally, leveraging the developed PA design methodologies and circuits, a low power transmit-receive phased array front-end module is fully integrated in 40 nm technology. In transmit-mode, the front-end maintains the excellent performance of the 40 nm PA: achieving +5.5 dBm/9% for the same 8×100 MHz carrier aggregation signal above. In receive-mode, a 5.5 dB noise figure (NF) and a minimum third-order input intercept point (IIP₃) of −13 dBm are achieved. The performance of the implemented CMOS frontend is comparable to state-of-the-art publications and commercial products that were very recently developed in silicon germanium (SiGe) technologies for 5G communication

    Enhancement of Millimeter-Band Transceivers with Gap Waveguide Technology

    Get PDF
    Mención Internacional en el título de doctorIt is known to all that year after year in modern society there is an urgent demand to consume wirelessly, and even stream ever larger multimedia content. High-frequency technologies have made it possible to go from transmitting analog voice and SMS text messages, to now transmitting live video in 4K quality from a mid-range smartphone. The way to measure these advances is by the bandwidth (Mb/s) reserved for each network user and the cost required to achieve it. To achieve even higher bandwidths, it is essential to improve signal coding techniques or increase the frequency of the signal, for example: to the mmWave bands (25GHz - 100 GHz), where these high-frequency techniques come into play. However, there is a frequency limit where current planar technology materials - such as the printed circuit boards used to build RF devices - are so lossy that they are not suitable at these mmWave frequencies. Current commercial solutions consist of guiding the electromagnetic energy with hollow metallic waveguides, but they suffer from the problem that as the frequency increases the diameter of these waveguides gets smaller and smaller, so manufacturing tolerances increase exorbitantly. Not to mention that they are usually manufactured in two parts, one upper and one lower, whose joints are not always perfect and produce energy losses. With these issues in mind, in 2009 the theory and basic science of a new electromagnetic energy guidance technology called Gap Waveguide was proposed, which is based on the use of metasurfaces constructed with periodic elements similar to a bed of nails. There are several implementations of this technology, but the three main ones are: Ridge, Groove and Inverted Microstrip Gap Waveguide. The latter is the most compatible with conventional planar manufacturing technologies and therefore the most cost-effective, although it also has drawbacks mainly in terms of losses when compared to the other versions. This thesis aims to deepen the study of the Inverted Microstrip guidance technology, its limitations and to develop with it some of the needed components in RF systems such as filters, diplexers, amplifiers, antennas, etc. Regarding the methodology for this thesis, a commercial simulation software for the analysis of antennas and components, CST Microwave Studio [1], has been used. AWR Microwave Office [2], a circuit simulator, has also been used to complement the simulations. On the other hand, there is a laboratory for the manufacture of prototypes in printed technology (with some limitations in terms of resolution) and the corresponding measurement laboratory, which includes network analyzers up to 40 GHz, spectrum analyzers and an anechoic chamber.This thesis arose under the Spanish Ministry of Science and Innovation (MINECO) and European Regional Development Fund (ERDF) project, called "Antenna for Mobile Satellite Communications (SATCOM) in Ka-Band by means of metasurfaces (2016-2019)", with reference TEC2016-79700-C2-2-R. Under this contract, the author signed an FPI research contract.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Íñigo Cuiñas Gómez.- Secretario: Ángela María Coves Soler.- Vocal: Astrid Algaba Brazále

    Conception et réalisation d'un récepteur composé de réseau d'antennes YAGI multicouches verticales et de composants en ondes millimétriques

    Get PDF
    RÉSUMÉ Les applications en ondes millimétriques telles que les réseaux sans-fils haute vitesse demandent des composants de hautes performances, faibles coûts de revient, modulaires et compacts. Ce mémoire présente la conception d’une chaine de démodulation en ondes millimétriques utilisant le concept du multicouche. Tout d’abord, une antenne Yagi multicouche est proposée et démontrée à 5.8 GHz. La structure utilise pour la première fois les éléments parasites des antennes Yagi dans une structure de substrats empilés verticalement. Cela permet d’atteindre un gain de 12 dBi. Deux configuration sont présentées : une première basée sur un dipôle et une deuxième basée sur un patch circulaire afin d’avoir une double polarisation. Les résultats mesurés montrent un très bon accord avec les simulations. Basé sur les principes démontrés précédemment, l’antenne est adaptée à 60 GHz, puis un réseau d’antennes Yagi verticales en ondes millimétriques est introduit pour la première fois exploitant les technologies multicouches. Une analyse est faite pour définir les limites du design. L’antenne élément mesurée atteint un gain de 11 dBi. Le réseau 4x4 a une taille 50x50x60 mm3, et atteint un gain mesuré de 18 dBi sur 7% de bande passante. Une autre configuration du réseau utilisant des antennes Yagi inclinées permet d’avoir une réduction des lobes secondaires tout en ayant un impact minimum sur le gain. Les antennes proposées sont d’excellents candidats pour des systèmes intégrés, faibles coûts, demandant une petite empreinte en ondes millimétriques. Finalement, un nouveau six-port double couche utilisant des Guides Intégrés au Substrats (GIS) est présenté et démontré. Celui-ci permet de faire la démodulation QPSK. Son architecture utilise des coupleurs multicouches, fournissant une grande surface de couplage à travers deux fentes ; un déphaseur inédit, large bande composé de deux stubs plan-H et une ligne de référence ; ainsi que de deux diviseurs de puissance. Les simulations et mesures montrent que le circuit fonctionne correctement sur toute la bande V. La démodulation QPSK complète est testée sous le logiciel de simulation ADS et montre les excellentes performances du système.----------ABSTRACT Millimeter wave applications such as high-speed wireless connections require modular, compact-size, low-cost and high-performance systems. In order to realize a complete receiver satisfying those requirements, compact stacked multilayered designs are presented in this thesis. First, high-gain compact stacked multilayered Yagi designs are proposed and demonstrated at 5.8 GHz. The structure makes use for the first time of vertically stacked Yagi-like parasitic director elements that allow easily obtaining a simulated gain of 12 dBi. Two different antenna configurations are presented, one based on dipole geometry for single polarization, and the other on a circular patch to achieve dual polarization. Measured results of the fabricated antenna prototypes are in good agreement with simulated results. Second, based on the above-demonstrated principle, the antenna is redesigned and adapted for 60 GHz applications, and a novel design showing for the first time an array of Yagi elements in millimeter wave stacked structure is presented. An analysis is performed to define the structure limits. The measured element attains 11 dBi of gain. The proposed 4x4 array has a size of 50x50x60 mm3, and reaches a measured gain of 18 dBi over 7% of bandwidth. An alternative configuration of the array using angled Yagi antenna elements allows for a significant improvement of the side lobe level without a visible impact on the gain. The proposed antennas present excellent candidates for integrated low-cost millimeter-wave systems that require small footprint. Third, a novel dual layered six-port front-end circuit using the Substrate Integrated Waveguide (SIW) technology is presented and demonstrated. The six-port architecture makes use of multilayer couplers, providing a wide coupling area through two slots; a new broadband SIW phase shifter composed of two H-plane stub lines and one reference line; and two SIW power dividers. Simulation and measurement results show that the proposed six-port circuit can easily operate at 60 GHz for V-band system applications. The complete QPSK demodulation is tested through the ADS simulation platform to prove the good performances of the designed circuits

    Vector sum phase shifter using a quadrature magic-T for application in polarization control.

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Metamateriales sub-longitud de onda para microdispositivos fotónicos de altas prestaciones

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, leída el 28-04-2020Photonics has become of paramount importance in many areas of our everyday life owing to its inherent potential to develop not only telecom and datacom solutions, but also many other applications such as metrology [DeMiguel’18], energy generation and saving [Polman’12, Miller’17], spectrometry [Velasco’13a], sensing [Rodríguez-Barrios’10], medicine [Morgner’00] and industrial manufacturing [Malinauskas’16], to name a few. Particularly, integrated optics has attracted increasing industrial attention and scientific efforts to implement photonic integrated circuits (PICs) capable of tackling all abovementioned tasks in compact and efficient systems.Among all the available materials, silicon photonics leverages the maturity of the fabrication techniques reached by the microelectronics industry, enabling cost-effective mass production [Chen’18]. Different material platforms with a high refractive index contrast have been proposed for silicon photonics to achieve higher integration levels and perform more complex functions in a single chip, such as silicon-on-insulator (SOI) and silicon nitride (Si3N4, commonly simplified to SiN). The increased integration capacity of silicon photonics has enabled to tackle one of our greatest technological challenges: global data traffic inside data centers. Besides short-range optical interconnects for telecom and datacom applications, the progress in silicon photonics also encompasses many other untapped applications that are being explored by academia and industry: absorption spectroscopy and bio-sensing [Herrero-Bermello’17, Wangüemert-Pérez’19], light detection and ranging (LIDAR) [Poulton’17a], quantum computing [Harris’16], microwave and terahertz photonics [Marpaung’19, Harter’18], nonlinear optics [Leuthold’10], and many others...La fotónica ha adquirido una importancia fundamental en muchos ámbitos de nuestra vida cotidiana debido a su potencial intrínseco para desarrollar soluciones no sólo en el campo de las telecomunicaciones y las interconexiones de corto alcance, sino también en otras muchas áreas como la metrología [DeMiguel’18], la generación de energía [Polman’12, Miller’17], la espectrometría [Velasco’13a], la detección [Rodríguez-Barrios’10], la medicina [Morgner’00] y la fabricación industrial [Malinauskas’16]. En particular, la óptica integrada ha atraído tanto la atención de la industria como los esfuerzos científicos para implementar circuitos fotónicos integrados (PICs, Photonic Integrated Circuits) capaces de abordar todas las tareas mencionadas anteriormente en sistemas compactos y eficientes. Entre todos los materiales disponibles, la fotónica de silicio aprovecha la madurez de las técnicas de fabricación alcanzadas por la industria de la microelectrónica, permitiendo una producción en masa rentable [Chen’18]. Para maximizar su densidad de integración y poder realizar funciones más complejas en un único chip, diferentes plataformas materiales con un alto contraste de índice de refracción se han propuesto, como por ejemplo las plataformas de silicio sobre aislante (SOI, Silicon-On-Insulator) y de nitruro de silicio (Si3N4, comúnmente simplificada a SiN, Silicon Nitride). Esta mayor densidad de integración ha permitido abordar uno de nuestros mayores desafíos tecnológicos hasta la fecha: el tráfico de datos global dentro de los centros de datos. Además de las interconexiones ópticas de corto alcance, el progreso de la fotónica de silicio también comprende muchas otras aplicaciones inexploradas que están siendo estudiadas en el ámbito académico e industrial como, por ejemplo, la espectroscopía de absorción y biodetección [Herrero-Bermello’17, Wangüemert-Pérez’19], LIDAR (Light Detection And Ranging) [Poulton’17a], computación cuántica [Harris’16], fotónica de microondas y terahercios [Marpaung’19, Harter’18], óptica no lineal [Leuthold’10], y muchas otras...Fac. de Ciencias FísicasTRUEunpu
    corecore