83 research outputs found

    Smart grid architecture for rural distribution networks: application to a Spanish pilot network

    Get PDF
    This paper presents a novel architecture for rural distribution grids. This architecture is designed to modernize traditional rural networks into new Smart Grid ones. The architecture tackles innovation actions on both the power plane and the management plane of the system. In the power plane, the architecture focuses on exploiting the synergies between telecommunications and innovative technologies based on power electronics managing low scale electrical storage. In the management plane, a decentralized management system is proposed based on the addition of two new agents assisting the typical Supervisory Control And Data Acquisition (SCADA) system of distribution system operators. Altogether, the proposed architecture enables operators to use more effectively—in an automated and decentralized way—weak rural distribution systems, increasing the capability to integrate new distributed energy resources. This architecture is being implemented in a real Pilot Network located in Spain, in the frame of the European Smart Rural Grid project. The paper also includes a study case showing one of the potentialities of one of the principal technologies developed in the project and underpinning the realization of the new architecture: the so-called Intelligent Distribution Power Router.Postprint (published version

    Contribution to the operation of smart rural distribution grid with energy resources for improvement of the quality of service

    Get PDF
    This Thesis aims for contributing in the deployment and operation of Smart Grid, in isolated rural areas. As it would be expected, technological developments and investments in the electrical field have mainly focused on urban and industrial areas where the energy demand is high, as well as, the possibility to recover easily the investment. Therefore, difficult accessing areas where population and electrical demand are low are less attractive to invest. For this reason, this Thesis, in parallel to the European project known as Smart Rural Grid, has focused on the rural grid development. In this sense, the Thesis contributes directly in the design, conception and justification of an innovate architecture for rural systems. The architecture has been deployed and tested at the end of a medium voltage line of Estabanell Energia in Vallfogona del Ripollès. In addition, the presented architecture is characterised to integrate power electronics with embedded battery systems, an innovative management system and a proper telecommunication network in order to gain robustness, flexibility and hosting capacity for distributed and renewable generation. To sum up, the Thesis has focused on the design and development of new operation modes, algorithms and equipment that allow to manage automatically and optimally the energy resources; like power electronics, energy storage systems, distributed and renewable generation, and controllable loads. These strategies are able to correct common issues in rural grids, such as voltage variations and electrical losses. In addition, they improve and ensure the power quality and supply continuity, contribute to reduce operational costs and infrastructure optimization and deferral.Aquesta tesi vol contribuir en el desplegament de les futures xarxes elèctriques intel.ligents, en entorns rurals que habitualment són oblidats. Cal mencionar que els principals avenços tecnològics i les inversions per part dels gestors de la xarxa s'han centrat en entorns urbans i industrials, ja que aquests solen demandar grans quantitats d'energia, fet que facilita la recuperació de la inversió. Per tant, en un entorn on la densitat de població i la demanda energètica és baixa i a més l'orografia és complexa resulta menys atractiu invertir-hi. Per aquest motiu, la tesi, en paral.lel al projecte Europeu Smart Rural Grid, s'ha centrat en el desenvolupament de les xarxes elèctriques en entorns rurals. El principal objectiu de la tesi i alhora del projecte Smart Rural Grid és desenvolupar tecnologies per concebre les futures xarxes en entorns rurals. Aquestes han de permetre incrementar la baixa eficiència, qualitat i resiliència de la xarxa. En aquest sentit, la tesi ha contribuït en la concepció, disseny i justificació d'una innovadora arquitectura. Aquesta arquitectura, s'ha dut a terme en el final d'una línia de mitja tensió d'Estabanell Energia a Vallfogona del Ripollès. A més, aquesta arquitectura es caracteritza per integrar electrònica de potència, sistemes elèctrics d'emmagatzemament, un innovador sistema de gestió i de telecomunicacions, poden proporcionar a la xarxa una major robustesa, flexibilitat i capacitat per integrar a la nova generació distribuïda i renovable. D'altre banda, la Tesi també s'ha centrat en la concepció i desenvolupament de nous modes d'operació, algoritmes i dispositius que permeten automatitzar i optimitzar la gestió dels recursos distribuïts; és a dir, la electrònica de potència, els sistemes d'emmagatzemament, la generació renovable i distribuïda i les càrregues controlables. Aquestes estratègies permeten solventar els problemes habituals en aquest tipus de xarxes, com per exemple les variacions de tensió i les pèrdues. A més, també milloren i asseguren la qualitat i continuïtat del subministrament, ajuden a reduir els costos d'operació i retrassar la inversió en nova infraestructur

    Study of the electrical system of a commercial aircraft: development of a numerical simulation model

    Get PDF
    The need of electric power on aircraft has been growing from few VA of the engine ignition system of early aircraft such as the Wright flyer to almost 1 MVA for large long range commercial aircraft as for example the B747 or the A380. As aircraft is becoming more electric, the electric power system becomes increasingly critical. For this project I managed to study and develop a simulation model of the electrical system of a commercial aircraft, exactly based on the Airbus A320, to be used in electrical engineering and aerospace engineering courses in the near future

    Service continuity in complex power systems: safety, operation and maintenance

    Get PDF
    The research aims to define electrical architectures based on the rationalization of the distribution structure and of power sources with the achievement of the primary objectives of service continuity, power quality, safety and safe maintenance. The thesis consists of two parts: the first part deals with the architecture impact on a complex system analyzing the system configuration and operational safety aspects. New developments and methodologies are presented in the study of critical systems. A theory of complex systems for safety, operation and maintenance aspects is defined that enables to assist the management of the system throughout its whole life cycle and allows an implementation of programming languages. The second part refers to specific issues of mission critical power systems, data centers and hospitals especially. Several measurements were performed in laboratory and on field to analyze sneaky critical cases for the service continuity and the integrity of these strategic power systems.The research aims to define electrical architectures based on the rationalization of the distribution structure and of power sources with the achievement of the primary objectives of service continuity, power quality, safety and safe maintenance. The thesis consists of two parts: the first part deals with the architecture impact on a complex system analyzing the system configuration and operational safety aspects. New developments and methodologies are presented in the study of critical systems. A theory of complex systems for safety, operation and maintenance aspects is defined that enables to assist the management of the system throughout its whole life cycle and allows an implementation of programming languages. The second part refers to specific issues of mission critical power systems, data centers and hospitals especially. Several measurements were performed in laboratory and on field to analyze sneaky critical cases for the service continuity and the integrity of these strategic power systems

    Analysis of distribution systems with a high penetration of distributed generation

    Get PDF

    Contribution to the operation of smart rural distribution grid with energy resources for improvement of the quality of service

    Get PDF
    Tesi per compendi de publicacions, amb una secció retallada pels drets d'editorThis Thesis aims for contributing in the deployment and operation of Smart Grid, in isolated rural areas. As it would be expected, technological developments and investments in the electrical field have mainly focused on urban and industrial areas where the energy demand is high, as well as, the possibility to recover easily the investment. Therefore, difficult accessing areas where population and electrical demand are low are less attractive to invest. For this reason, this Thesis, in parallel to the European project known as Smart Rural Grid, has focused on the rural grid development. In this sense, the Thesis contributes directly in the design, conception and justification of an innovate architecture for rural systems. The architecture has been deployed and tested at the end of a medium voltage line of Estabanell Energia in Vallfogona del Ripollès. In addition, the presented architecture is characterised to integrate power electronics with embedded battery systems, an innovative management system and a proper telecommunication network in order to gain robustness, flexibility and hosting capacity for distributed and renewable generation. To sum up, the Thesis has focused on the design and development of new operation modes, algorithms and equipment that allow to manage automatically and optimally the energy resources; like power electronics, energy storage systems, distributed and renewable generation, and controllable loads. These strategies are able to correct common issues in rural grids, such as voltage variations and electrical losses. In addition, they improve and ensure the power quality and supply continuity, contribute to reduce operational costs and infrastructure optimization and deferral.Aquesta tesi vol contribuir en el desplegament de les futures xarxes elèctriques intel.ligents, en entorns rurals que habitualment són oblidats. Cal mencionar que els principals avenços tecnològics i les inversions per part dels gestors de la xarxa s'han centrat en entorns urbans i industrials, ja que aquests solen demandar grans quantitats d'energia, fet que facilita la recuperació de la inversió. Per tant, en un entorn on la densitat de població i la demanda energètica és baixa i a més l'orografia és complexa resulta menys atractiu invertir-hi. Per aquest motiu, la tesi, en paral.lel al projecte Europeu Smart Rural Grid, s'ha centrat en el desenvolupament de les xarxes elèctriques en entorns rurals. El principal objectiu de la tesi i alhora del projecte Smart Rural Grid és desenvolupar tecnologies per concebre les futures xarxes en entorns rurals. Aquestes han de permetre incrementar la baixa eficiència, qualitat i resiliència de la xarxa. En aquest sentit, la tesi ha contribuït en la concepció, disseny i justificació d'una innovadora arquitectura. Aquesta arquitectura, s'ha dut a terme en el final d'una línia de mitja tensió d'Estabanell Energia a Vallfogona del Ripollès. A més, aquesta arquitectura es caracteritza per integrar electrònica de potència, sistemes elèctrics d'emmagatzemament, un innovador sistema de gestió i de telecomunicacions, poden proporcionar a la xarxa una major robustesa, flexibilitat i capacitat per integrar a la nova generació distribuïda i renovable. D'altre banda, la Tesi també s'ha centrat en la concepció i desenvolupament de nous modes d'operació, algoritmes i dispositius que permeten automatitzar i optimitzar la gestió dels recursos distribuïts; és a dir, la electrònica de potència, els sistemes d'emmagatzemament, la generació renovable i distribuïda i les càrregues controlables. Aquestes estratègies permeten solventar els problemes habituals en aquest tipus de xarxes, com per exemple les variacions de tensió i les pèrdues. A més, també milloren i asseguren la qualitat i continuïtat del subministrament, ajuden a reduir els costos d'operació i retrassar la inversió en nova infraestructuraPostprint (published version

    Modelling and analysis of demand response implementation in the residential sector

    Get PDF
    Demand Response (DR) eliminates the need for expensive capital expenditure on the electricity distribution, transmission and the generation systems by encouraging consumers to alter their power usage through electricity pricing or incentive programs. However, modelling of DR programs for residential consumers is complicated due to the uncertain consumption behavious of consumers and the complexity of schedulling a large number of household appliances. This thesis has investigated the design and the implementation challenges of the two most commonly used DR components in the residential sector, i.e., time of use (TOU) and direct load control (DLC) programs for improving their effectiveness and implementation with innovative strategies to facilitate their acceptance by both consumers and utilities. In price-based DR programs, the TOU pricing scheme is one of the most attractive and simplest approaches for reducing peak electricity demand in the residential sector. This scheme has been adopted in many developed countries because it requires less communication infrastructure for its implementation. However, the implementation of TOU pricing in low and lower-middle income economies is less appealing, mainly due to a large number of low-income consumers, as traditional TOU pricing schemes may increase the cost of electricity for low income residential consumers and adversely affect their comfort levels. The research in this thesis proposes an alternative TOU pricing strategy for the residential sector in developing countries in order to manage peak demand problems while ensuring a low impact on consumers’ monthly energy bills and comfort levels. In this study, Bangladesh is used as an example of a lower-to-middle income developing country. The DLC program is becoming an increasingly attractive solution for utilities in developed countries due to advances in the construction of communication infrastructures as part of the smart grid concept deployment. One of the main challenges of the DLC program implementation is ensuring optimal control over a large number of different household appliances for managing both short and long intervals of voltage variation problems in distribution networks at both medium voltage (MV) and low voltage (LV) networks, while simultaneously enabling consumers to maintain their comfort levels. Another important challenge for DLC implementation is achieving a fair distribution of incentives among a large number of participating consumers. This thesis addresses these challenges by proposing a multi-layer load control algorithm which groups the household appliances based on the intervals of the voltage problems and coordinates with the reactive power from distributed generators (DGs) for the effective voltage management in MV networks. The proposed load controller takes into consideration the consumption preference of individual appliance, ensuring that the consumer’s comfort level is satisfied as well as fairly incentivising consumers based on their contributions in network voltage and power loss improvement. Another significant challenge with the existing DLC strategy as it applies to managing voltage in LV networks is that it does not take into account the network’s unbalance constraints in the load control algorithm. In LV distribution networks, voltage unbalance is prevalent and is one of the main power quality problems of concern. Unequal DR activation among the phases may cause excessive voltage unbalance in the network. In this thesis, a new load control algorithm is developed with the coordination of secondary on-load tap changer (OLTC) transformer for effective management of both voltage magnitude and unbalance in the LV networks. The proposed load control algorithm minimises the disturbance to consumers’ comfort levels by prioritising their consumption preferences. It motivates consumers to participate in DR program by providing flexibility to bid their participation prices dynamically in each DR event. The proposed DR programs are applicable for both developed and developing countries based on their available communication infrastructure for DR implementation. The main benefits of the proposed DR programs can be shared between consumers and their utilities. Consumers have flexibility in being able to prioritise their comfort levels and bid for their participation prices or receive fair incentives, while utilities effectively manage their network peak demand and power quality problems with minimum compensation costs. As a whole, consumers get the opportunity to minimise their electricity bills while utilities are able to defer or avoid the high cost of their investment in network reinforcements

    MOD-0A 200 kW wind turbine generator design and analysis report

    Get PDF
    The design, analysis, and initial performance of the MOD-OA 200 kW wind turbine generator at Clayton, NM is documented. The MOD-OA was designed and built to obtain operation and performance data and experience in utility environments. The project requirements, approach, system description, design requirements, design, analysis, system tests, installation, safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the wind turbine are discussed. The design and analysis of the rotor, drive train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electricl system, and control systems are presented. The rotor includes the blades, hub, and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control are discussed. Systems analyses on dynamic loads and fatigue are presented

    Intelligent distribution network design

    Get PDF
    Distribution networks (medium voltage and low voltage) are subject to changes caused by re-regulation of the energy supply, economical and environmental constraints more sensitive equipment, power quality requirements and the increasing penetration of distributed generation. The latter is seen as one of the main challenges for today’s and future network operation and design. In this thesis it is investigated in what way these developments enforce intelligent distribution network design and new engineering tools. Furthermore it should be investigated how a new design and control strategy can contribute to meet the power quality and performance requirements in distribution networks in future. This thesis focuses on network structures that, typical for the Netherlands, are based on relatively short underground cables.Managing current and voltage in such networks both during normal and disturbed operation, requires a good network design and an adequate earthing concept. The limited size of Dutch distribution networks has a positive effect on power quality aspects and reliability. The use of impedance earthing for medium voltage (MV) cable networks reduces the risk of multi-phase faults that cause large fault currents and deep dips. It also reduces the risk on transient overvoltages due to re-striking of cable faults. A TN earthing system for the low voltage (LV) network reduces the risk of damaged apparatus and it maintains safety for people. However, care must be taken for the earthing of devices of other service providers, which requires a co-operative solution. The fast developments of computation techniques and IT equipment in the network opened the possibility to perform many calculations in short time based on both actual and historical data. Examples are the on-line distribution loadflow and the short-circuit calculation for protection coordination and intelligent fault location. In LV and MV network calculations the accuracy of the models and the availability of data are the main obstacles. Because of the unsymmetrical nature of load and generation in LV networks a multiple conductor model is needed. For safety calculations also the earth impedances have to be modelled as well as the neutral and protective earth impedances and their mutual interactions. The protection philosophy in MV networks must take into account the changing requirements regarding safety and power quality. An overall philosophy concerning both network and generator protection is necessary. New developments in substation automation benefit future upgrade and refurbishment of substation control and protection. As a result, also cheap,accurate and fast fault location becomes feasible, reducing the outage time of the customers. Next the influence of distributed generation on the above subjects is investigated. The increasing magnitude of short-circuit currents and the increasing voltage variations in the network are seen as a major challenge for the network planners. Conventional measures for reducing voltage problems may introduce problems with the short-circuit current level and vice versa. In networks which contain a large amount of both load and distributed generation, adverse voltage problems may occur, especially when the generation is located in the LV network. In order to reduce this, specific control strategies need to be developed. The last part of the thesis is related to these control strategies as a solution for operating future distribution networks. By introducing storage and power electronics, networks can be transformed into autonomously controlled networks. These networks remain an inseparable part of the electricity network but may behave in a fairly autonomous manner, both internally and externally, with respect to the rest of the network. The focus in this thesis is on maintaining an optimal voltage for all customers during all combinations of load and generation. Because of the autonomous behaviour of the control systems, their operation must be based on local measurements. A suggested approach is to replace the normal open point between MV feeders by a so called "intelligent node". This node is able to control the power flow in several feeders by means of power electronics and, if provided, by electricity storage. The voltage profile can be improved further, by introducing an intelligent voltage control on the HV/MV transformer feeding the distribution network. The simulation studies in this research have been performed on a realistic model of a typical Dutch MV/LV distribution system. Based on the results the following conclusions are drawn: • The HV/MV transformer control must be based on line drop compensation. This compensation must use the load situation instead of the measured exchange signal. The compensation factor must differ between cases of high load and of high generation. • The optimal control of the intelligent node is a voltage control, based on a linear dependence of the voltage at the node and the power flow towards that node. This method can be improved when the voltage of the MV bus bar in the substation is taken into account. • Methods to obtain a perfect voltage profile will lead to a storage device that is not available for this voltage level yet. • A voltage control based on a fixed value at both terminals of the intelligent node and at the MV bus bar of the HV/MV substation does not result in the optimal voltage profile, although guarantee a good voltage quality and might therefore be a good alternativ
    corecore