109 research outputs found

    Compressed representation of Kohn-Sham orbitals via selected columns of the density matrix

    Full text link
    Given a set of Kohn-Sham orbitals from an insulating system, we present a simple, robust, efficient and highly parallelizable method to construct a set of, optionally orthogonal, localized basis functions for the associated subspace. Our method explicitly uses the fact that density matrices associated with insulating systems decay exponentially along the off-diagonal direction in the real space representation. Our method avoids the usage of an optimization procedure, and the localized basis functions are constructed directly from a set of selected columns of the density matrix (SCDM). Consequently, the only adjustable parameter in our method is the truncation threshold of the localized basis functions. Our method can be used in any electronic structure software package with an arbitrary basis set. We demonstrate the numerical accuracy and parallel scalability of the SCDM procedure using orbitals generated by the Quantum ESPRESSO software package. We also demonstrate a procedure for combining SCDM with Hockney's algorithm to efficiently perform Hartree-Fock exchange energy calculations with near linear scaling.Comment: 7 pages, 4 figures; short example code for computing the SCDM; parallel scaling results; slightly restructured introduction and clarification of the input needed to compute the SCD

    Stable Sparse Orthogonal Factorization of Ill-Conditioned Banded Matrices for Parallel Computing

    Get PDF
    Sequential and parallel algorithms based on the LU factorization or the QR factorization have been intensely studied and widely used in the problems of computation with large-scale ill-conditioned banded matrices. Great concerns on existing methods include ill-conditioning, sparsity of factor matrices, computational complexity, and scalability. In this dissertation, we study a sparse orthogonal factorization of a banded matrix motivated by parallel computing. Specifically, we develop a process to factorize a banded matrix as a product of a sparse orthogonal matrix and a sparse matrix which can be transformed to an upper triangular matrix by column permutations. We prove that the proposed process requires low complexity, and it is numerically stable, maintaining similar stability results as the modified Gram-Schmidt process. On this basis, we develop a parallel algorithm for the factorization in a distributed computing environment. Through an analysis of its performance, we show that the communication costs reach the theoretical least upper bounds, while its parallel complexity or speedup approaches the optimal bound. For an ill-conditioned banded system, we construct a sequential solver that breaks it down into small-scale underdetermined systems, which are solved by the proposed factorization with high accuracy. We also implement a parallel solver with strategies to treat the memory issue appearing in extra large-scale linear systems of size over one billion. Numerical experiments confirm the theoretical results derived in this thesis, and demonstrate the superior accuracy and scalability of the proposed solvers for ill-conditioned linear systems, comparing to the most commonly used direct solvers

    Benefits from using mixed precision computations in the ELPA-AEO and ESSEX-II eigensolver projects

    Get PDF
    We first briefly report on the status and recent achievements of the ELPA-AEO (Eigenvalue Solvers for Petaflop Applications - Algorithmic Extensions and Optimizations) and ESSEX II (Equipping Sparse Solvers for Exascale) projects. In both collaboratory efforts, scientists from the application areas, mathematicians, and computer scientists work together to develop and make available efficient highly parallel methods for the solution of eigenvalue problems. Then we focus on a topic addressed in both projects, the use of mixed precision computations to enhance efficiency. We give a more detailed description of our approaches for benefiting from either lower or higher precision in three selected contexts and of the results thus obtained

    suCAQR: A Simplified Communication-Avoiding QR Factorization Solver Using the TBLAS Framework

    Get PDF
    The scope of this paper is to design and implement a scalable QR factorization solver that can deliver the fastest performance for tall and skinny matrices and square matrices on modern supercomputers. The new solver, named scalable universal communication-avoiding QR factorization (suCAQR), introduces a simplified and tuning-less way to realize the communication-avoiding QR factorization algorithm to support matrices of any shapes. The software design includes a mixed usage of physical and logical data layouts, a simplified method of dynamic-root binary-tree reduction, and a dynamic dataflow implementation. Compared with the existing communication avoiding QR factorization implementations, suCAQR has the benefits of being simpler, more general, and more efficient. By balancing the degree of parallelism and the proportion of faster computational kernels, it is able to achieve scalable performance on clusters of multicore nodes. The software essentially combines the strengths of both synchronization-reducing approach and communication-avoiding approach to achieve high performance. Based on the experimental results using 1,024 CPU cores, suCAQR is faster than DPLASMA by up to 30%, and faster than ScaLAPACK by up to 30 times

    Novel Monte Carlo Methods for Large-Scale Linear Algebra Operations

    Get PDF
    Linear algebra operations play an important role in scientific computing and data analysis. With increasing data volume and complexity in the Big Data era, linear algebra operations are important tools to process massive datasets. On one hand, the advent of modern high-performance computing architectures with increasing computing power has greatly enhanced our capability to deal with a large volume of data. One the other hand, many classical, deterministic numerical linear algebra algorithms have difficulty to scale to handle large data sets. Monte Carlo methods, which are based on statistical sampling, exhibit many attractive properties in dealing with large volume of datasets, including fast approximated results, memory efficiency, reduced data accesses, natural parallelism, and inherent fault tolerance. In this dissertation, we present new Monte Carlo methods to accommodate a set of fundamental and ubiquitous large-scale linear algebra operations, including solving large-scale linear systems, constructing low-rank matrix approximation, and approximating the extreme eigenvalues/ eigenvectors, across modern distributed and parallel computing architectures. First of all, we revisit the classical Ulam-von Neumann Monte Carlo algorithm and derive the necessary and sufficient condition for its convergence. To support a broad family of linear systems, we develop Krylov subspace Monte Carlo solvers that go beyond the use of Neumann series. New algorithms used in the Krylov subspace Monte Carlo solvers include (1) a Breakdown-Free Block Conjugate Gradient algorithm to address the potential rank deficiency problem occurred in block Krylov subspace methods; (2) a Block Conjugate Gradient for Least Squares algorithm to stably approximate the least squares solutions of general linear systems; (3) a BCGLS algorithm with deflation to gain convergence acceleration; and (4) a Monte Carlo Generalized Minimal Residual algorithm based on sampling matrix-vector products to provide fast approximation of solutions. Secondly, we design a rank-revealing randomized Singular Value Decomposition (R3SVD) algorithm for adaptively constructing low-rank matrix approximations to satisfy application-specific accuracy. Thirdly, we study the block power method on Markov Chain Monte Carlo transition matrices and find that the convergence is actually depending on the number of independent vectors in the block. Correspondingly, we develop a sliding window power method to find stationary distribution, which has demonstrated success in modeling stochastic luminal Calcium release site. Fourthly, we take advantage of hybrid CPU-GPU computing platforms to accelerate the performance of the Breakdown-Free Block Conjugate Gradient algorithm and the randomized Singular Value Decomposition algorithm. Finally, we design a Gaussian variant of Freivalds’ algorithm to efficiently verify the correctness of matrix-matrix multiplication while avoiding undetectable fault patterns encountered in deterministic algorithms

    Tall-and-skinny QR factorization with approximate Householder reflectors on graphics processors

    Full text link
    [EN] We present a novel method for the QR factorization of large tall-and-skinny matrices that introduces an approximation technique for computing the Householder vectors. This approach is very competitive on a hybrid platform equipped with a graphics processor, with a performance advantage over the conventional factorization due to the reduced amount of data transfers between the graphics accelerator and the main memory of the host. Our experiments show that, for tall¿skinny matrices, the new approach outperforms the code in MAGMA by a large margin, while it is very competitive for square matrices when the memory transfers and CPU computations are the bottleneck of the Householder QR factorizationThis research was supported by the Project TIN2017-82972-R from the MINECO (Spain) and the EU H2020 Project 732631 "OPRECOMP. Open Transprecision Computing".Tomás Domínguez, AE.; Quintana-Ortí, ES. (2020). Tall-and-skinny QR factorization with approximate Householder reflectors on graphics processors. The Journal of Supercomputing (Online). 76(11):8771-8786. https://doi.org/10.1007/s11227-020-03176-3S877187867611Abdelfattah A, Haidar A, Tomov S, Dongarra J (2018) Analysis and design techniques towards high-performance and energy-efficient dense linear solvers on GPUs. IEEE Trans Parallel Distrib Syst 29(12):2700–2712. https://doi.org/10.1109/TPDS.2018.2842785Ballard G, Demmel J, Grigori L, Jacquelin M, Knight N, Nguyen H (2015) Reconstructing Householder vectors from tall-skinny QR. J Parallel Distrib Comput 85:3–31. https://doi.org/10.1016/j.jpdc.2015.06.003Barrachina S, Castillo M, Igual FD, Mayo R, Quintana-Ortí ES (2008) Solving dense linear systems on graphics processors. In: Luque E, Margalef T, Benítez D (eds) Euro-Par 2008—parallel processing. Springer, Heidelberg, pp 739–748Benson AR, Gleich DF, Demmel J (2013) Direct QR factorizations for tall-and-skinny matrices in MapReduce architectures. In: 2013 IEEE International Conference on Big Data, pp 264–272. https://doi.org/10.1109/BigData.2013.6691583Businger P, Golub GH (1965) Linear least squares solutions by householder transformations. Numer Math 7(3):269–276. https://doi.org/10.1007/BF01436084Demmel J, Grigori L, Hoemmen M, Langou J (2012) Communication-optimal parallel and sequential QR and LU factorizations. SIAM J Sci Comput 34(1):206–239. https://doi.org/10.1137/080731992Dongarra J, Du Croz J, Hammarling S, Duff IS (1990) A set of level 3 basic linear algebra subprograms. ACM Trans Math Softw 16(1):1–17. https://doi.org/10.1145/77626.79170Drmač Z, Bujanović Z (2008) On the failure of rank-revealing qr factorization software—a case study. ACM Trans Math Softw 35(2):12:1–12:28. https://doi.org/10.1145/1377612.1377616Fukaya T, Nakatsukasa Y, Yanagisawa Y, Yamamoto Y (2014) CholeskyQR2: A simple and communication-avoiding algorithm for computing a tall-skinny QR factorization on a large-scale parallel system. In: 2014 5th workshop on latest advances in scalable algorithms for large-scale systems, pp 31–38. https://doi.org/10.1109/ScalA.2014.11Fukaya T, Kannan R, Nakatsukasa Y, Yamamoto Y, Yanagisawa Y (2018) Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices, arXiv:1809.11085Golub G, Van Loan C (2013) Matrix computations. Johns Hopkins studies in the mathematical sciences. Johns Hopkins University Press, BaltimoreGunter BC, van de Geijn RA (2005) Parallel out-of-core computation and updating the QR factorization. ACM Trans Math Softw 31(1):60–78. https://doi.org/10.1145/1055531.1055534Joffrain T, Low TM, Quintana-Ortí ES, Rvd Geijn, Zee FGV (2006) Accumulating householder transformations, revisited. ACM Trans Math Softw 32(2):169–179. https://doi.org/10.1145/1141885.1141886Puglisi C (1992) Modification of the householder method based on the compact WY representation. SIAM J Sci Stat Comput 13(3):723–726. https://doi.org/10.1137/0913042Saad Y (2003) Iterative methods for sparse linear systems, 3rd edn. Society for Industrial and Applied Mathematics, PhiladelphiaSchreiber R, Van Loan C (1989) A storage-efficient WY representation for products of householder transformations. SIAM J Sci Comput 10(1):53–57. https://doi.org/10.1137/0910005Stathopoulos A, Wu K (2001) A block orthogonalization procedure with constant synchronization requirements. SIAM J Sci Comput 23(6):2165–2182. https://doi.org/10.1137/S1064827500370883Strazdins P (1998) A comparison of lookahead and algorithmic blocking techniques for parallel matrix factorization. Tech. Rep. TR-CS-98-07, Department of Computer Science, The Australian National University, Canberra 0200 ACT, AustraliaTomás Dominguez AE, Quintana Orti ES (2018) Fast blocking of householder reflectors on graphics processors. In: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp 385–393. https://doi.org/10.1109/PDP2018.2018.00068Volkov V, Demmel JW (2008) LU, QR and Cholesky factorizations using vector capabilities of GPUs. Tech. Rep. 202, LAPACK Working Note. http://www.netlib.org/lapack/lawnspdf/lawn202.pdfYamamoto Y, Nakatsukasa Y, Yanagisawa Y, Fukaya T (2015) Roundoff error analysis of the Cholesky QR2 algorithm. Electron Trans Numer Anal 44:306–326Yamazaki I, Tomov S, Dongarra J (2015) Mixed-precision Cholesky QR factorization and its case studies on multicore CPU with multiple GPUs. SIAM J Sci Comput 37(3):C307–C330. https://doi.org/10.1137/14M097377
    • …
    corecore