5,361 research outputs found

    Evaluation of union bounds for space-time codes based on a common function

    Get PDF
    Error-rate evaluation of Space-Time codes using Union bounds sometimes requires very heavy computational loads and so is impractical to use. In this paper, a Common function shared by different Union bounds is derived and used to develop a modified Union bound (MUB) for error-rate evaluation. Results of numerical evaluations and Monte-Carlo simulation on two 2x2 rotation-based S-T codes show that the MUB provides a good compromise between the required computational load and the accuracy for error-rate evaluation. ©2009 IEEE.published_or_final_versionThe 22nd IEEE Canadian Conference on Electrical and Computer Engineering (CCECE 2009), St. John's, NL., 3-6 May 2009. In Proceedings of the 22nd CCECE, 2009, p. 89-9

    Comparative study on the application of evolutionary optimization techniques to orbit transfer maneuvers

    Get PDF
    Orbit transfer maneuvers are here considered as benchmark cases for comparing performance of different optimization techniques in the framework of direct methods. Two different classes of evolutionary algorithms, a conventional genetic algorithm and an estimation of distribution method, are compared in terms of performance indices statistically evaluated over a prescribed number of runs. At the same time, two different types of problem representations are considered, a first one based on orbit propagation and a second one based on the solution of Lambert’s problem for direct transfers. In this way it is possible to highlight how problem representation affects the capabilities of the considered numerical approaches

    Towards Fully Optimized BICM Transceivers

    Get PDF
    Bit-interleaved coded modulation (BICM) transceivers often use equally spaced constellations and a random interleaver. In this paper, we propose a new BICM design, which considers hierarchical (nonequally spaced) constellations, a bit-level multiplexer, and multiple interleavers. It is shown that this new scheme increases the degrees of freedom that can be exploited in order to improve its performance. Analytical bounds on the bit error rate (BER) of the system in terms of the constellation parameters and the multiplexing rules are developed for the additive white Gaussian Noise (AWGN) and Nakagami-mm fading channels. These bounds are then used to design the BICM transceiver. Numerical results show that, compared to conventional BICM designs, and for a target BER of 10−610^{-6}, gains up to 3 dB in the AWGN channel are obtained. For fading channels, the gains depend on the fading parameter, and reach 2 dB for a target BER of 10−710^{-7} and m=5m=5.Comment: Submitted to the IEEE Transactions on Communication

    Coding for Parallel Channels: Gallager Bounds for Binary Linear Codes with Applications to Repeat-Accumulate Codes and Variations

    Full text link
    This paper is focused on the performance analysis of binary linear block codes (or ensembles) whose transmission takes place over independent and memoryless parallel channels. New upper bounds on the maximum-likelihood (ML) decoding error probability are derived. These bounds are applied to various ensembles of turbo-like codes, focusing especially on repeat-accumulate codes and their recent variations which possess low encoding and decoding complexity and exhibit remarkable performance under iterative decoding. The framework of the second version of the Duman and Salehi (DS2) bounds is generalized to the case of parallel channels, along with the derivation of their optimized tilting measures. The connection between the generalized DS2 and the 1961 Gallager bounds, addressed by Divsalar and by Sason and Shamai for a single channel, is explored in the case of an arbitrary number of independent parallel channels. The generalization of the DS2 bound for parallel channels enables to re-derive specific bounds which were originally derived by Liu et al. as special cases of the Gallager bound. In the asymptotic case where we let the block length tend to infinity, the new bounds are used to obtain improved inner bounds on the attainable channel regions under ML decoding. The tightness of the new bounds for independent parallel channels is exemplified for structured ensembles of turbo-like codes. The improved bounds with their optimized tilting measures show, irrespectively of the block length of the codes, an improvement over the union bound and other previously reported bounds for independent parallel channels; this improvement is especially pronounced for moderate to large block lengths.Comment: Submitted to IEEE Trans. on Information Theory, June 2006 (57 pages, 9 figures

    Near-optimal loop tiling by means of cache miss equations and genetic algorithms

    Get PDF
    The effectiveness of the memory hierarchy is critical for the performance of current processors. The performance of the memory hierarchy can be improved by means of program transformations such as loop tiling, which is a code transformation targeted to reduce capacity misses. This paper presents a novel systematic approach to perform near-optimal loop tiling based on an accurate data locality analysis (cache miss equations) and a powerful technique to search the solution space that is based on a genetic algorithm. The results show that this approach can remove practically all capacity misses for all considered benchmarks. The reduction of replacement misses results in a decrease of the miss ratio that can be as significant as a factor of 7 for the matrix multiply kernel.Peer ReviewedPostprint (published version
    • 

    corecore