78 research outputs found

    Matroidal approaches to rough sets via closure operators

    Get PDF
    AbstractThis paper studies rough sets from the operator-oriented view by matroidal approaches. We firstly investigate some kinds of closure operators and conclude that the Pawlak upper approximation operator is just a topological and matroidal closure operator. Then we characterize the Pawlak upper approximation operator in terms of the closure operator in Pawlak matroids, which are first defined in this paper, and are generalized to fundamental matroids when partitions are generalized to coverings. A new covering-based rough set model is then proposed based on fundamental matroids and properties of this model are studied. Lastly, we refer to the abstract approximation space, whose original definition is modified to get a one-to-one correspondence between closure systems (operators) and concrete models of abstract approximation spaces. We finally examine the relations of four kinds of abstract approximation spaces, which correspond exactly to the relations of closure systems

    Two Studies in Representation of Signals

    Get PDF
    The thesis consists of two parts. In the first part deals with a multi-scale approach to vector quantization. An algorithm, dubbed reconstruction trees, is proposed and analyzed. Here the goal is parsimonious reconstruction of unsupervised data; the algorithm leverages a family of given partitions, to quickly explore the data in a coarse-to-fine multi-scale fashion. The main technical contribution is an analysis of the expected distortion achieved by the proposed algorithm, when the data are assumed to be sampled from a fixed unknown probability measure. Both asymptotic and finite sample results are provided, under suitable regularity assumptions on the probability measure. Special attention is devoted to the case in which the probability measure is supported on a smooth sub-manifold of the ambient space, and is absolutely continuous with respect to the Riemannian measure of it; in this case asymptotic optimal quantization is well understood and a benchmark for understanding the results is offered. The second part of the thesis deals with a novel approach to Graph Signal Processing which is based on Matroid Theory. Graph Signal Processing is the study of complex functions of the vertex set of a graph, based on the combinatorial Graph Laplacian operator of the underlying graph. This naturally gives raise to a linear operator, that to many regards resembles a Fourier transform, mirroring the graph domain into a frequency domain. On the one hand this structure asymptotically tends to mimic analysis on locally compact groups or manifolds, but on the other hand its discrete nature triggers a whole new scenario of algebraic phenomena. Hints towards making sense of this scenario are objects that already embody a discrete nature in continuous setting, such as measures with discrete support in time and frequency, also called Dirac combs. While these measures are key towards formulating sampling theorems and constructing wavelet frames in time-frequency Analysis, in the graph-frequency setting these boil down to distinguished combinatorial objects, the so called Circuits of a matroid, corresponding to the Fourier transform operator. In a particularly symmetric case, corresponding to Cayley graphs of finite abelian groups, the Dirac combs are proven to completely describe the so called lattice of cyclic flats, exhibiting the property of being atomistic, among other properties. This is a strikingly concise description of the matroid, that opens many questions concerning how this highly regular structure relaxes into more general instances. Lastly, a related problem concerning the combinatorial interplay between Fourier operator and its Spectrum is described, provided with some ideas towards its future development

    Discrete Optimization Methods for Segmentation and Matching

    Get PDF
    This dissertation studies discrete optimization methods for several computer vision problems. In the first part, a new objective function for superpixel segmentation is proposed. This objective function consists of two components: entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes. I present a new graph construction for images and show that this construction induces a matroid. The segmentation is then given by the graph topology which maximizes the objective function under the matroid constraint. By exploiting submodular and monotonic properties of the objective function, I develop an efficient algorithm with a worst-case performance bound of 12\frac{1}{2} for the superpixel segmentation problem. Extensive experiments on the Berkeley segmentation benchmark show the proposed algorithm outperforms the state of the art in all the standard evaluation metrics. Next, I propose a video segmentation algorithm by maximizing a submodular objective function subject to a matroid constraint. This function is similar to the standard energy function in computer vision with unary terms, pairwise terms from the Potts model, and a novel higher-order term based on appearance histograms. I show that the standard Potts model prior, which becomes non-submodular for multi-label problems, still induces a submodular function in a maximization framework. A new higher-order prior further enforces consistency in the appearance histograms both spatially and temporally across the video. The matroid constraint leads to a simple algorithm with a performance bound of 12\frac{1}{2}. A branch and bound procedure is also presented to improve the solution computed by the algorithm. The last part of the dissertation studies the object localization problem in images given a single hand-drawn example or a gallery of shapes as the object model. Although many shape matching algorithms have been proposed for the problem, chamfer matching remains to be the preferred method when speed and robustness are considered. In this dissertation, I significantly improve the accuracy of chamfer matching while reducing the computational time from linear to sublinear (shown empirically). It is achieved by incorporating edge orientation information in the matching algorithm so the resulting cost function is piecewise smooth and the cost variation is tightly bounded. Moreover, I present a sublinear time algorithm for exact computation of the directional chamfer matching score using techniques from 3D distance transforms and directional integral images. In addition, the smooth cost function allows one to bound the cost distribution of large neighborhoods and skip the bad hypotheses. Experiments show that the proposed approach improves the speed of the original chamfer matching up to an order of 45 times, and it is much faster than many state of art techniques while the accuracy is comparable. I further demonstrate the application of the proposed algorithm in providing seamless operation for a robotic bin picking system

    Finding a low-rank basis in a matrix subspace

    Full text link
    For a given matrix subspace, how can we find a basis that consists of low-rank matrices? This is a generalization of the sparse vector problem. It turns out that when the subspace is spanned by rank-1 matrices, the matrices can be obtained by the tensor CP decomposition. For the higher rank case, the situation is not as straightforward. In this work we present an algorithm based on a greedy process applicable to higher rank problems. Our algorithm first estimates the minimum rank by applying soft singular value thresholding to a nuclear norm relaxation, and then computes a matrix with that rank using the method of alternating projections. We provide local convergence results, and compare our algorithm with several alternative approaches. Applications include data compression beyond the classical truncated SVD, computing accurate eigenvectors of a near-multiple eigenvalue, image separation and graph Laplacian eigenproblems

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group

    機械学習と通信のための劣モジュラ・スパース最適化手法

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 岩田 覚, 東京大学教授 定兼 邦彦, 東京大学教授 山本 博資, 東京大学准教授 武田 朗子, 東京大学准教授 平井 広志University of Tokyo(東京大学

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore