106,570 research outputs found

    Predicting stock market movements using network science: An information theoretic approach

    Full text link
    A stock market is considered as one of the highly complex systems, which consists of many components whose prices move up and down without having a clear pattern. The complex nature of a stock market challenges us on making a reliable prediction of its future movements. In this paper, we aim at building a new method to forecast the future movements of Standard & Poor's 500 Index (S&P 500) by constructing time-series complex networks of S&P 500 underlying companies by connecting them with links whose weights are given by the mutual information of 60-minute price movements of the pairs of the companies with the consecutive 5,340 minutes price records. We showed that the changes in the strength distributions of the networks provide an important information on the network's future movements. We built several metrics using the strength distributions and network measurements such as centrality, and we combined the best two predictors by performing a linear combination. We found that the combined predictor and the changes in S&P 500 show a quadratic relationship, and it allows us to predict the amplitude of the one step future change in S&P 500. The result showed significant fluctuations in S&P 500 Index when the combined predictor was high. In terms of making the actual index predictions, we built ARIMA models. We found that adding the network measurements into the ARIMA models improves the model accuracy. These findings are useful for financial market policy makers as an indicator based on which they can interfere with the markets before the markets make a drastic change, and for quantitative investors to improve their forecasting models.Comment: 13 pages, 7 figures, 3 table

    Financial Trading Model with Stock Bar Chart Image Time Series with Deep Convolutional Neural Networks

    Full text link
    Even though computational intelligence techniques have been extensively utilized in financial trading systems, almost all developed models use the time series data for price prediction or identifying buy-sell points. However, in this study we decided to use 2-D stock bar chart images directly without introducing any additional time series associated with the underlying stock. We propose a novel algorithmic trading model CNN-BI (Convolutional Neural Network with Bar Images) using a 2-D Convolutional Neural Network. We generated 2-D images of sliding windows of 30-day bar charts for Dow 30 stocks and trained a deep Convolutional Neural Network (CNN) model for our algorithmic trading model. We tested our model separately between 2007-2012 and 2012-2017 for representing different market conditions. The results indicate that the model was able to outperform Buy and Hold strategy, especially in trendless or bear markets. Since this is a preliminary study and probably one of the first attempts using such an unconventional approach, there is always potential for improvement. Overall, the results are promising and the model might be integrated as part of an ensemble trading model combined with different strategies.Comment: accepted to be published in Intelligent Automation and Soft Computing journa

    Time series data mining: preprocessing, analysis, segmentation and prediction. Applications

    Get PDF
    Currently, the amount of data which is produced for any information system is increasing exponentially. This motivates the development of automatic techniques to process and mine these data correctly. Specifically, in this Thesis, we tackled these problems for time series data, that is, temporal data which is collected chronologically. This kind of data can be found in many fields of science, such as palaeoclimatology, hydrology, financial problems, etc. TSDM consists of several tasks which try to achieve different objectives, such as, classification, segmentation, clustering, prediction, analysis, etc. However, in this Thesis, we focus on time series preprocessing, segmentation and prediction. Time series preprocessing is a prerequisite for other posterior tasks: for example, the reconstruction of missing values in incomplete parts of time series can be essential for clustering them. In this Thesis, we tackled the problem of massive missing data reconstruction in SWH time series from the Gulf of Alaska. It is very common that buoys stop working for different periods, what it is usually related to malfunctioning or bad weather conditions. The relation of the time series of each buoy is analysed and exploited to reconstruct the whole missing time series. In this context, EANNs with PUs are trained, showing that the resulting models are simple and able to recover these values with high precision. In the case of time series segmentation, the procedure consists in dividing the time series into different subsequences to achieve different purposes. This segmentation can be done trying to find useful patterns in the time series. In this Thesis, we have developed novel bioinspired algorithms in this context. For instance, for paleoclimate data, an initial genetic algorithm was proposed to discover early warning signals of TPs, whose detection was supported by expert opinions. However, given that the expert had to individually evaluate every solution given by the algorithm, the evaluation of the results was very tedious. This led to an improvement in the body of the GA to evaluate the procedure automatically. For significant wave height time series, the objective was the detection of groups which contains extreme waves, i.e. those which are relatively large with respect other waves close in time. The main motivation is to design alert systems. This was done using an HA, where an LS process was included by using a likelihood-based segmentation, assuming that the points follow a beta distribution. Finally, the analysis of similarities in different periods of European stock markets was also tackled with the aim of evaluating the influence of different markets in Europe. When segmenting time series with the aim of reducing the number of points, different techniques have been proposed. However, it is an open challenge given the difficulty to operate with large amounts of data in different applications. In this work, we propose a novel statistically-driven CRO algorithm (SCRO), which automatically adapts its parameters during the evolution, taking into account the statistical distribution of the population fitness. This algorithm improves the state-of-the-art with respect to accuracy and robustness. Also, this problem has been tackled using an improvement of the BBPSO algorithm, which includes a dynamical update of the cognitive and social components in the evolution, combined with mathematical tricks to obtain the fitness of the solutions, which significantly reduces the computational cost of previously proposed coral reef methods. Also, the optimisation of both objectives (clustering quality and approximation quality), which are in conflict, could be an interesting open challenge, which will be tackled in this Thesis. For that, an MOEA for time series segmentation is developed, improving the clustering quality of the solutions and their approximation. The prediction in time series is the estimation of future values by observing and studying the previous ones. In this context, we solve this task by applying prediction over high-order representations of the elements of the time series, i.e. the segments obtained by time series segmentation. This is applied to two challenging problems, i.e. the prediction of extreme wave height and fog prediction. On the one hand, the number of extreme values in SWH time series is less with respect to the number of standard values. In this way, the prediction of these values cannot be done using standard algorithms without taking into account the imbalanced ratio of the dataset. For that, an algorithm that automatically finds the set of segments and then applies EANNs is developed, showing the high ability of the algorithm to detect and predict these special events. On the other hand, fog prediction is affected by the same problem, that is, the number of fog events is much lower tan that of non-fog events, requiring a special treatment too. A preprocessing of different data coming from sensors situated in different parts of the Valladolid airport are used for making a simple ANN model, which is physically corroborated and discussed. The last challenge which opens new horizons is the estimation of the statistical distribution of time series to guide different methodologies. For this, the estimation of a mixed distribution for SWH time series is then used for fixing the threshold of POT approaches. Also, the determination of the fittest distribution for the time series is used for discretising it and making a prediction which treats the problem as ordinal classification. The work developed in this Thesis is supported by twelve papers in international journals, seven papers in international conferences, and four papers in national conferences

    Evolutionary data selection for enhancing models of intraday forex time series

    Get PDF
    The hypothesis in this paper is that a significant amount of intraday market data is either noise or redundant, and that if it is eliminated, then predictive models built using the remaining intraday data will be more accurate. To test this hypothesis, we use an evolutionary method (called Evolutionary Data Selection, EDS) to selectively remove out portions of training data that is to be made available to an intraday market predictor. After performing experiments in which data-selected and non-data-selected versions of the same predictive models are compared, it is shown that EDS is effective and does indeed boost predictor accuracy. It is also shown in the paper that building multiple models using EDS and placing them into an ensemble further increases performance. The datasets for evaluation are large intraday forex time series, specifically series from the EUR/USD, the USD/JPY and the EUR/JPY markets, and predictive models for two primary tasks per market are built: intraday return prediction and intraday volatility prediction
    corecore