16,247 research outputs found

    Planck CMB Anomalies: Astrophysical and Cosmological Secondary Effects and the Curse of Masking

    Full text link
    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.Comment: Summary of results given in Table 2. Accepted for publication in JCAP, 4th August 201

    Shrunken Locally Linear Embedding for Passive Microwave Retrieval of Precipitation

    Full text link
    This paper introduces a new Bayesian approach to the inverse problem of passive microwave rainfall retrieval. The proposed methodology relies on a regularization technique and makes use of two joint dictionaries of coincidental rainfall profiles and their corresponding upwelling spectral radiative fluxes. A sequential detection-estimation strategy is adopted, which basically assumes that similar rainfall intensity values and their spectral radiances live close to some sufficiently smooth manifolds with analogous local geometry. The detection step employs a nearest neighborhood classification rule, while the estimation scheme is equipped with a constrained shrinkage estimator to ensure stability of retrieval and some physical consistency. The algorithm is examined using coincidental observations of the active precipitation radar (PR) and passive microwave imager (TMI) on board the Tropical Rainfall Measuring Mission (TRMM) satellite. We present promising results of instantaneous rainfall retrieval for some tropical storms and mesoscale convective systems over ocean, land, and coastal zones. We provide evidence that the algorithm is capable of properly capturing different storm morphologies including high intensity rain-cells and trailing light rainfall, especially over land and coastal areas. The algorithm is also validated at an annual scale for calendar year 2013 versus the standard (version 7) radar (2A25) and radiometer (2A12) rainfall products of the TRMM satellite

    Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: implications for emission modeling

    Get PDF
    Two-dimensional measurements of snowpack properties (stratigraphic layering, density, grain size and temperature) were used as inputs to the multi-layer Helsinki University of Technology (HUT) microwave emission model at a centimeter-scale horizontal resolution, across a 4.5 m transect of ground-based passive microwave radiometer footprints near Churchill, Manitoba, Canada. Snowpack stratigraphy was complex (between six and eight layers) with only three layers extending continuously throughout the length of the transect. Distributions of one-dimensional simulations, accurately representing complex stratigraphic layering, were evaluated using measured brightness temperatures. Large biases (36 to 68 K) between simulated and measured brightness temperatures were minimized (-0.5 to 0.6 K), within measurement accuracy, through application of grain scaling factors (2.6 to 5.3) at different combinations of frequencies, polarizations and model extinction coefficients. Grain scaling factors compensated for uncertainty relating optical SSA to HUT effective grain size inputs and quantified relative differences in scattering and absorption properties of various extinction coefficients. The HUT model required accurate representation of ice lenses, particularly at horizontal polarization, and large grain scaling factors highlighted the need to consider microstructure beyond the size of individual grains. As variability of extinction coefficients was strongly influenced by the proportion of large (hoar) grains in a vertical profile, it is important to consider simulations from distributions of one-dimensional profiles rather than single profiles, especially in sub-Arctic snowpacks where stratigraphic variability can be high. Model sensitivity experiments suggested the level of error in field measurements and the new methodological framework used to apply them in a snow emission model were satisfactory. Layer amalgamation showed a three-layer representation of snowpack stratigraphy reduced the bias of a one-layer representation by about 50%

    Some doubts on the validity of the foreground Galactic contribution subtraction from microwave anisotropies

    Full text link
    The Galactic foreground contamination in CMBR anisotropies, especially from the dust component, is not easily separable from the cosmological or extragalactic component. In this paper, some doubts will be raised concerning the validity of the methods used to date to remove Galactic dust emission in order to show that none of them achieves its goal. First, I review the recent bibliography on the topic and discuss critically the methods of foreground subtraction: the cross-correlation with templates, analysis assuming the spectral shape of the Galactic components, the "maximum entropy method", "internal linear combination", and "wavelet-based high resolution fitting of internal templates". Second, I analyse the galactic latitude dependence from WMAP data. The frequency dependence is discussed with the data in the available literature. The result is that all methods of subtracting the Galactic contamination are inaccurate. The galactic latitude dependence analysis or the frequency dependence of the anisotropies in the range 50-250 GHz put a constraint on the maximum Galactic contribution in the power spectrum to be less than a ~10% (68% C. L.) for a ~1 degree scale, and possibly higher for larger scales. The origin of most of the signal in the CMBR anisotropies is not Galactic. In any case, the subtraction of the Galaxy is not accurate enough to allow a "precision Cosmology"; other sources of contamination (extragalactic, solar system) are also present.Comment: 24 pages, 1 figure, accepted to be published in J. Astrophys. Ast

    Large Scale Traces of Solar System Cold Dust on CMB Anisotropies

    Full text link
    We explore the microwave anisotropies at large angular scales produced by the emission from cold and large dust grains, expected to exist in the outer parts of the Solar System, using a simple toy model for this diuse emission. Its amplitude is constrained in the Far-IR by the COBE data and is compatible with simulations found in the literature. We analyze the templates derived after subtracting our model from the WMAP ILC 7 yr maps and investigate on the cosmological implications of such a possible foreground. The anomalies related to the low quadrupole of the angular power spectrum, the two-point correlation function, the parity and the excess of signal found in the ecliptic plane are significantly alleviated. An impact of this foreground for some cosmological parameters characterizing the spectrum of primordial density perturbations, relevant for on-going and future CMB anisotropy experiments, is found.Comment: Issue 2.0, Accepted for pub. in MNRAS, Apr 8th, 2011, (sub. Oct 4th, 2010); 10 pages, 6 Figures, 1 table; pdflatex with mn2e, AMS, natbib, txfonts, graphic

    An overview of the current status of CMB observations

    Full text link
    In this paper we briefly review the current status of the Cosmic Microwave Background (CMB) observations, summarising the latest results obtained from CMB experiments, both in intensity and polarization, and the constraints imposed on the cosmological parameters. We also present a summary of current and future CMB experiments, with a special focus on the quest for the CMB B-mode polarization.Comment: Latest CMB results have been included. References added. To appear in "Highlights of Spanish Astrophysics V", Proceedings of the VIII Scientific Meeting of the Spanish Astronomical Society (SEA) held in Santander, 7-11 July, 200

    Development of UHF radiometer

    Get PDF
    A wideband multifrequency UHF radiometer was initially developed to operate in the 500 to 710 MHz frequency range for the remote measurement of ocean water salinity. However, radio-frequency interference required a reconfiguration to operate in the single-frequency radio astronomy band of 608 to 614 MHz. Details of the radiometer development and testing are described. Flight testing over variable terrain provided a performance comparison of the UHF radiometer with an L-band radiometer for remote sensing of geophysical parameters. Although theoretically more sensitive, the UHF radiometer was found to be less desirable in practice than the L-band radiometer

    Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?

    Get PDF
    (Abridged) A simple six-parameter LCDM model provides a successful fit to WMAP data, both when the data are analyzed alone and in combination with other cosmological data. Even so, it is appropriate to search for any hints of deviations from the now standard model of cosmology, which includes inflation, dark energy, dark matter, baryons, and neutrinos. The cosmological community has subjected the WMAP data to extensive and varied analyses. While there is widespread agreement as to the overall success of the six-parameter LCDM model, various "anomalies" have been reported relative to that model. In this paper we examine potential anomalies and present analyses and assessments of their significance. In most cases we find that claimed anomalies depend on posterior selection of some aspect or subset of the data. Compared with sky simulations based on the best fit model, one can select for low probability features of the WMAP data. Low probability features are expected, but it is not usually straightforward to determine whether any particular low probability feature is the result of the a posteriori selection or of non-standard cosmology. We examine in detail the properties of the power spectrum with respect to the LCDM model. We examine several potential or previously claimed anomalies in the sky maps and power spectra, including cold spots, low quadrupole power, quadropole-octupole alignment, hemispherical or dipole power asymmetry, and quadrupole power asymmetry. We conclude that there is no compelling evidence for deviations from the LCDM model, which is generally an acceptable statistical fit to WMAP and other cosmological data.Comment: 19 pages, 17 figures, also available with higher-res figures on http://lambda.gsfc.nasa.gov; accepted by ApJS; (v2) text as accepte
    • …
    corecore