5,637 research outputs found

    A non-hybrid method for the PDF equations of turbulent flows on unstructured grids

    Full text link
    In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. A set of parallel algorithms is proposed to provide an efficient solution of the PDF transport equation, modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain (e.g. the mean pressure) and to track particles. All three aspects regarding the grid make use of the finite element method (FEM) employing the simplest linear FEM shape functions. To model the small-scale mixing of the transported scalar, the interaction by exchange with the conditional mean model is adopted. An adaptive algorithm that computes the velocity-conditioned scalar mean is proposed that homogenizes the statistical error over the sample space with no assumption on the shape of the underlying velocity PDF. Compared to other hybrid particle-in-cell approaches for the PDF equations, the current methodology is consistent without the need for consistency conditions. The algorithm is tested by computing the dispersion of passive scalars released from concentrated sources in two different turbulent flows: the fully developed turbulent channel flow and a street canyon (or cavity) flow. Algorithmic details on estimating conditional and unconditional statistics, particle tracking and particle-number control are presented in detail. Relevant aspects of performance and parallelism on cache-based shared memory machines are discussed.Comment: Accepted in Journal of Computational Physics, Feb. 20, 200

    Geometric study of Lagrangian and Eulerian structures in turbulent channel flow

    Get PDF
    We report the detailed multi-scale and multi-directional geometric study of both evolving Lagrangian and instantaneous Eulerian structures in turbulent channel flow at low and moderate Reynolds numbers. The Lagrangian structures (material surfaces) are obtained by tracking the Lagrangian scalar field, and Eulerian structures are extracted from the swirling strength field at a time instant. The multi-scale and multi-directional geometric analysis, based on the mirror-extended curvelet transform, is developed to quantify the geometry, including the averaged inclination and sweep angles, of both structures at up to eight scales ranging from the half-height δ of the channel to several viscous length scales δ_ν. Here, the inclination angle is on the plane of the streamwise and wall-normal directions, and the sweep angle is on the plane of streamwise and spanwise directions. The results show that coherent quasi-streamwise structures in the near-wall region are composed of inclined objects with averaged inclination angle 35°–45°, averaged sweep angle 30°–40° and characteristic scale 20δ_ν, and 'curved legs' with averaged inclination angle 20°–30°, averaged sweep angle 15°–30° and length scale 5δ_ν–10δ_ν. The temporal evolution of Lagrangian structures shows increasing inclination and sweep angles with time, which may correspond to the lifting process of near-wall quasi-streamwise vortices. The large-scale structures that appear to be composed of a number of individual small-scale objects are detected using cross-correlations between Eulerian structures with large and small scales. These packets are located at the near-wall region with the typical height 0.25δ and may extend over 10δ in the streamwise direction in moderate-Reynolds-number, long channel flows. In addition, the effects of the Reynolds number and comparisons between Lagrangian and Eulerian structures are discussed

    Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence

    Get PDF
    We report the multi-scale geometric analysis of Lagrangian structures in forced isotropic turbulence and also with a frozen turbulent field. A particle backward-tracking method, which is stable and topology preserving, was applied to obtain the Lagrangian scalar field φ governed by the pure advection equation in the Eulerian form ∂_tφ + u · ∇φ = 0. The temporal evolution of Lagrangian structures was first obtained by extracting iso-surfaces of φ with resolution 1024^3 at different times, from t = 0 to t = T_e, where T_e is the eddy turnover time. The surface area growth rate of the Lagrangian structure was quantified and the formation of stretched and rolled-up structures was observed in straining regions and stretched vortex tubes, respectively. The multi-scale geometric analysis of Bermejo-Moreno & Pullin (J. Fluid Mech., vol. 603, 2008, p. 101) has been applied to the evolution of φ to extract structures at different length scales and to characterize their non-local geometry in a space of reduced geometrical parameters. In this multi-scale sense, we observe, for the evolving turbulent velocity field, an evolutionary breakdown of initially large-scale Lagrangian structures that first distort and then either themselves are broken down or stretched laterally into sheets. Moreover, after a finite time, this progression appears to be insensible to the form of the initially smooth Lagrangian field. In comparison with the statistical geometry of instantaneous passive scalar and enstrophy fields in turbulence obtained by Bermejo-Moreno & Pullin (2008) and Bermejo-Moreno et al. (J. Fluid Mech., vol. 620, 2009, p. 121), Lagrangian structures tend to exhibit more prevalent sheet-like shapes at intermediate and small scales. For the frozen flow, the Lagrangian field appears to be attracted onto a stream-surface field and it develops less complex multi-scale geometry than found for the turbulent velocity field. In the latter case, there appears to be a tendency for the Lagrangian field to move towards a vortex-surface field of the evolving turbulent flow but this is mitigated by cumulative viscous effects

    The Lundgren-Monin-Novikov Hierarchy: Kinetic Equations for Turbulence

    Get PDF
    We present an overview of recent works on the statistical description of turbulent flows in terms of probability density functions (PDFs) in the framework of the Lundgren-Monin-Novikov (LMN) hierarchy. Within this framework, evolution equations for the PDFs are derived from the basic equations of fluid motion. The closure problem arises either in terms of a coupling to multi-point PDFs or in terms of conditional averages entering the evolution equations as unknown functions. We mainly focus on the latter case and use data from direct numerical simulations (DNS) to specify the unclosed terms. Apart from giving an introduction into the basic analytical techniques, applications to two-dimensional vorticity statistics, to the single-point velocity and vorticity statistics of three-dimensional turbulence, to the temperature statistics of Rayleigh-B\'enard convection and to Burgers turbulence are discussed.Comment: Accepted for publication in C. R. Acad. Sc
    corecore