548 research outputs found

    Robust dynamic traffic assignment for single destination networks under demand and capacity uncertainty

    Get PDF
    In this article, we discuss the system-optimum dynamic traffic assignment (SO-DTA) problem in the presence of time-dependent uncertainties on both traffic demands and road link capacities. Building on an earlier formulation of the problem based on the cell transmission model, the SO-DTA problem is robustly solved, in a probabilistic sense, within the framework of random convex programs (RCPs). Different from traditional robust optimization schemes, which find a solution that is valid for all the values of the uncertain parameters, in the RCP approach we use a fixed number of random realizations of the uncertainty, and we are able to guarantee a priori a desired upper bound on the probability that a new, unseen realization of the uncertainty would make the computed solution unfeasible. The particular problem structure and the introduction of an effective domination criterion for discarding a large number of generated samples enables the computation of a robust solution for medium- to large-scale networks, with low desired violation probability, with a moderate computational effort. The proposed approach is quite general and applicable to any problem that can be formulated through a linear programing model, where the stochastic parameters appear in the constraint constant terms only. Simulation results corroborate the effectiveness of our approach

    Road network equilibrium approaches to environmental sustainability

    Get PDF
    Environmental sustainability is closely related to transportation, especially to the road network, because vehicle emissions and noise damage the environment and have adverse effects on human health. It is, therefore, important to take their effect into account when designing and managing road networks. Road network equilibrium approaches have been used to estimate this impact and to design and manage road networks accordingly. However, no comprehensive review has summarized the applications of these approaches to the design and management of road networks that explicitly address environmental concerns. More importantly, it is necessary to identify this gap in the literature so that future research can improve the existing methodologies. Hence, this paper summarizes these applications and identifies potential future research directions in terms of theories, modelling approaches, algorithms, analyses, and applications.postprin

    Using Synthetic Data to Train Neural Networks is Model-Based Reasoning

    Full text link
    We draw a formal connection between using synthetic training data to optimize neural network parameters and approximate, Bayesian, model-based reasoning. In particular, training a neural network using synthetic data can be viewed as learning a proposal distribution generator for approximate inference in the synthetic-data generative model. We demonstrate this connection in a recognition task where we develop a novel Captcha-breaking architecture and train it using synthetic data, demonstrating both state-of-the-art performance and a way of computing task-specific posterior uncertainty. Using a neural network trained this way, we also demonstrate successful breaking of real-world Captchas currently used by Facebook and Wikipedia. Reasoning from these empirical results and drawing connections with Bayesian modeling, we discuss the robustness of synthetic data results and suggest important considerations for ensuring good neural network generalization when training with synthetic data.Comment: 8 pages, 4 figure

    On the continuum approximation of the on-and-off signal control on dynamic traffic networks

    Get PDF
    In the modeling of traffic networks, a signalized junction is typically treated using a binary variable to model the on-and-off nature of signal operation. While accurate, the use of binary variables can cause problems when studying large networks with many intersections. Instead, the signal control can be approximated through a continuum approach where the on-and-off control variable is replaced by a continuous priority parameter. Advantages of such approximation include elimination of the need for binary variables, lower time resolution requirements, and more flexibility and robustness in a decision environment. It also resolves the issue of discontinuous travel time functions arising from the context of dynamic traffic assignment. Despite these advantages in application, it is not clear from a theoretical point of view how accurate is such continuum approach; i.e., to what extent is this a valid approximation for the on-and-off case. The goal of this paper is to answer these basic research questions and provide further guidance for the application of such continuum signal model. In particular, by employing the Lighthill-Whitham-Richards model (Lighthill and Whitham, 1955; Richards, 1956) on a traffic network, we investigate the convergence of the on-and-off signal model to the continuum model in regimes of diminishing signal cycles. We also provide numerical analyses on the continuum approximation error when the signal cycles are not infinitesimal. As we explain, such convergence results and error estimates depend on the type of fundamental diagram assumed and whether or not vehicle spillback occurs to the signalized intersection in question. Finally, a traffic signal optimization problem is presented and solved which illustrates the unique advantages of applying the continuum signal model instead of the on-and-off model
    • …
    corecore