478 research outputs found

    Providing Private and Fast Data Access for Cloud Systems

    Get PDF
    Cloud storage and computing systems have become the backbone of many applications such as streaming (Netflix, YouTube), storage (Dropbox, Google Drive), and computing (Amazon Elastic Computing, Microsoft Azure). To address the ever growing demand for storage and computing requirements of these applications, cloud services are typically im-plemented over a large-scale distributed data storage system. Cloud systems are expected to provide the following two pivotal services for the users: 1) private content access and 2) fast content access. The goal of this thesis is to understand and address some of the challenges that need to be overcome to provide these two services. The first part of this thesis focuses on private data access in distributed systems. In particular, we contribute to the areas of Private Information Retrieval (PIR) and Private Computation (PC). In the PIR problem, there is a user who wishes to privately retrieve a subset of files belonging to a database stored on a single or multiple remote server(s). In the PC problem, the user wants to privately compute functions of a subset of files in the database. The PIR and PC problems seek the most efficient solutions with the minimum download cost that enable the user to retrieve or compute what it wants privately. We establish fundamental bounds on the minimum download cost required for guaran-teeing the privacy requirement in some practical and realistic settings of the PIR and PC problems and develop novel and efficient privacy-preserving algorithms for these settings. In particular, we study the single-server and multi-server settings of PIR in which the user initially has a random linear combination of a subset of files in the database as side in-formation, referred to as PIR with coded side information. We also study the multi-server setting of the PC in which the user wants to privately compute multiple linear combinations of a subset of files in the database, referred to as Private Linear Transformation. The second part of this thesis focuses on fast content access in distributed systems. In particular, we study the use of erasure coding to handle data access requests in distributed storage and computing systems. Service rate region is an important performance metric for coded distributed systems, which expresses the set of all data access request rates that can be simultaneously served by the system. In this context, two classes of problems arise: 1) characterizing the service rate region of a given storage scheme and finding the optimal request allocation, and 2) designing the underlying erasure code to handle a given desired service rate region. As contributions along the first class of problems, we characterize the service rate region of systems with some common coding schemes such as Simplex codes and Reed-Muller codes by introducing two novel techniques: 1) fractional matching and vertex cover on graph representation of codes, and 2) geometric representations of codes. Moreover, along the second class of code design, we establish some lower bounds on the minimum storage required to handle a desired service rate region for a coded distributed system and in some regimes, we design efficient storage schemes that provide the desired service rate region while minimizing the storage requirements

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first
    • …
    corecore