158,389 research outputs found

    A Combinatorial Analog of a Theorem of F.J.Dyson

    Get PDF
    Tucker's Lemma is a combinatorial analog of the Borsuk-Ulam theorem and the case n=2 was proposed by Tucker in 1945. Numerous generalizations and applications of the Lemma have appeared since then. In 2006 Meunier proved the Lemma in its full generality in his Ph.D. thesis. There are generalizations and extensions of the Borsuk-Ulam theorem that do not yet have combinatorial analogs. In this note, we give a combinatorial analog of a result of Freeman J. Dyson and show that our result is equivalent to Dyson's theorem. As with Tucker's Lemma, we hope that this will lead to generalizations and applications and ultimately a combinatorial analog of Yang's theorem of which both Borsuk-Ulam and Dyson are special cases.Comment: Original version: 7 pages, 2 figures. Revised version: 12 pages, 4 figures, revised proofs. Final revised version: 9 pages, 2 figures, revised proof

    A remark on Getzler's semi-classical approximation

    Full text link
    Ezra Getzler notes in the proof of the main theorem of "The semi-classical approximation for modular operads" that "A proof of the theorem could no doubt be given using [a combinatorial interpretation in terms of a sum over necklaces]; however, we prefer to derive it directly from Theorem 2.2". In this note we give such a direct combinatorial proof using wreath product symmetric functions.Comment: 7 page

    Combinatorial Stokes formulas via minimal resolutions

    Get PDF
    We describe an explicit chain map from the standard resolution to the minimal resolution for the finite cyclic group Z_k of order k. We then demonstrate how such a chain map induces a "Z_k-combinatorial Stokes theorem", which in turn implies "Dold's theorem" that there is no equivariant map from an n-connected to an n-dimensional free Z_k-complex. Thus we build a combinatorial access road to problems in combinatorics and discrete geometry that have previously been treated with methods from equivariant topology. The special case k=2 for this is classical; it involves Tucker's (1949) combinatorial lemma which implies the Borsuk-Ulam theorem, its proof via chain complexes by Lefschetz (1949), the combinatorial Stokes formula of Fan (1967), and Meunier's work (2006).Comment: 18 page

    Generalized Kneser coloring theorems with combinatorial proofs

    Full text link
    The Kneser conjecture (1955) was proved by Lov\'asz (1978) using the Borsuk-Ulam theorem; all subsequent proofs, extensions and generalizations also relied on Algebraic Topology results, namely the Borsuk-Ulam theorem and its extensions. Only in 2000, Matou\v{s}ek provided the first combinatorial proof of the Kneser conjecture. Here we provide a hypergraph coloring theorem, with a combinatorial proof, which has as special cases the Kneser conjecture as well as its extensions and generalization by (hyper)graph coloring theorems of Dol'nikov, Alon-Frankl-Lov\'asz, Sarkaria, and Kriz. We also give a combinatorial proof of Schrijver's theorem.Comment: 19 pages, 4 figure

    A functional combinatorial central limit theorem

    Full text link
    The paper establishes a functional version of the Hoeffding combinatorial central limit theorem. First, a pre-limiting Gaussian process approximation is defined, and is shown to be at a distance of the order of the Lyapounov ratio from the original random process. Distance is measured by comparison of expectations of smooth functionals of the processes, and the argument is by way of Stein's method. The pre-limiting process is then shown, under weak conditions, to converge to a Gaussian limit process. The theorem is used to describe the shape of random permutation tableaux.Comment: 23 page
    corecore