23,933 research outputs found

    Spanning forests and the vector bundle Laplacian

    Full text link
    The classical matrix-tree theorem relates the determinant of the combinatorial Laplacian on a graph to the number of spanning trees. We generalize this result to Laplacians on one- and two-dimensional vector bundles, giving a combinatorial interpretation of their determinants in terms of so-called cycle rooted spanning forests (CRSFs). We construct natural measures on CRSFs for which the edges form a determinantal process. This theory gives a natural generalization of the spanning tree process adapted to graphs embedded on surfaces. We give a number of other applications, for example, we compute the probability that a loop-erased random walk on a planar graph between two vertices on the outer boundary passes left of two given faces. This probability cannot be computed using the standard Laplacian alone.Comment: Published in at http://dx.doi.org/10.1214/10-AOP596 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Coloring trees in reverse mathematics

    Get PDF
    The tree theorem for pairs (TT22\mathsf{TT}^2_2), first introduced by Chubb, Hirst, and McNicholl, asserts that given a finite coloring of pairs of comparable nodes in the full binary tree 2<ω2^{<\omega}, there is a set of nodes isomorphic to 2<ω2^{<\omega} which is homogeneous for the coloring. This is a generalization of the more familiar Ramsey's theorem for pairs (RT22\mathsf{RT}^2_2), which has been studied extensively in computability theory and reverse mathematics. We answer a longstanding open question about the strength of TT22\mathsf{TT}^2_2, by showing that this principle does not imply the arithmetic comprehension axiom (ACA0\mathsf{ACA}_0) over the base system, recursive comprehension axiom (RCA0\mathsf{RCA}_0), of second-order arithmetic. In addition, we give a new and self-contained proof of a recent result of Patey that TT22\mathsf{TT}^2_2 is strictly stronger than RT22\mathsf{RT}^2_2. Combined, these results establish TT22\mathsf{TT}^2_2 as the first known example of a natural combinatorial principle to occupy the interval strictly between ACA0\mathsf{ACA}_0 and RT22\mathsf{RT}^2_2. The proof of this fact uses an extension of the bushy tree forcing method, and develops new techniques for dealing with combinatorial statements formulated on trees, rather than on ω\omega.Comment: 25 page
    • …
    corecore